推 j0958322080: 林軒田的我記得有VC Dimension 11/24 14:36
推 jack1218: 林軒田的HTML有教 11/24 14:40
→ rn940111: 我就是在他的課上有看到,且我自己要讀的書也有,但是很 11/24 14:42
→ rn940111: 多課其實是沒有的,不管國內外都是,這件事我比較好奇有 11/24 14:42
→ rn940111: 什麼差別 11/24 14:42
→ hsnuyi: 因為不重要 現在的ML是工程導向 解工程問題就是逐個擊破 11/24 15:50
→ hsnuyi: 發現問題(e.g., 梯度消失)後再想解法就好 11/24 15:50
推 syc0924: 進階一點的理論ML課就會有啦 對一般使用者真的不重要 11/24 18:24
推 wtchen: learnable跟VC dimension需要一些數學才能理解 11/24 19:19
→ rn940111: 以hsunyi提到的概念,是否可以解讀成工程導向就像是直接 11/24 19:35
→ rn940111: 解決應用問題,但是不一定是從底部開始處理,可能ad hoc 11/24 19:35
→ rn940111: 的用了一些東西處理好也可以,除非遇到很系統性的問題? 11/24 19:35
推 kumitang: 我覺得是看從什麼角度來切入耶 我覺得數學系的比較會教 11/24 20:42
→ kumitang: 到這些(根據我自己的經驗 11/24 20:42
→ hsnuyi: 系統性問題也可以用工程導向解 解完後用大一統模型解釋就 11/24 22:34
→ hsnuyi: 是理論 11/24 22:34
推 VIATOR: VC dimension要花很多時間瞭解,不知道對應用也沒什麼差 11/25 02:08
→ ciman96: 因為不知道那些理論,ml使用者也能套工具 11/25 20:35
推 cplalexandta: 通常要理論ml課才會教那些 而且後來發現VC bound滿 11/28 04:51
→ cplalexandta: 多情況不是很tight 11/28 04:51
推 cplalexandta: 現在比較流行考慮data dependent的bound 像是pac-ba 11/28 04:58
→ cplalexandta: yes或是mutual information 可以從stability的概念 11/28 04:58
→ cplalexandta: 出發來理解 11/28 04:58
→ cplalexandta: 題外話 我覺得communication complexity對VC dimens 11/28 05:02
→ cplalexandta: ion的定義比較直觀 ml用的是組合學的概念反而在高維 11/28 05:02
→ cplalexandta: 的情況很難想像 11/28 05:02
→ cplalexandta: 不過老實說自學的話 尤其是為了工作 import torch可 11/28 05:04
→ cplalexandta: 能比學這些更有用啦... 11/28 05:04
推 agario: VC dimension 不見得能很好解釋 deep learning 的現象吧 01/17 08:58
→ agario: 很多時候反而 over-parametrization 比較好 01/17 08:59