看板 MATLAB 關於我們 聯絡資訊
請教版上各位強者, 假設現在有4個箱子,裡面分別放了兩顆球,也就是(1號,2號)、(3號,4號)、、、(7號,8號), 則需要列出2^4種組合情況, 意思是 [ 1,3,5,7 ; 1,3,5,8 ; 1,3,6,7 ; 1,3,6,8 ; ...2,4,6,8 ] 。 因為現在我需要用到2^16的所有可能性,所以用暴力解應該是會崩潰,目前只有想到用16次for迴圈來產生,但覺得這樣寫起來很冗長,希望有高手能提供比較簡潔的運算式子救救小弟我QQ ----- Sent from JPTT on my HTC_M8x. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.123.58.4 ※ 文章網址: https://www.ptt.cc/bbs/MATLAB/M.1526622780.A.5C1.html
LiamIssac: help一下 randperm 然後找看看那個toolbox裡面的函數 05/18 16:01
LiamIssac: 應該有你要的 05/18 16:01
super820914: 好,謝謝L大提供的方向 05/18 16:59
labbat: 試算一下有2520種組合? 05/18 22:21
labbat: 痾 不同問題 05/18 22:22
zhewei: dec2bin(0:2^4) 每一個bit代表一個箱子抽到第1個或第2個 05/21 11:30
zhewei: 其中0代表第1個,0代表第2個,例如1101 結果為2,4,5,8 05/21 11:31
zhewei: dec2bin(0:2^4-1) //更正!! 05/21 11:33
sunev: ndgrid 05/21 11:36