看板 Math 關於我們 聯絡資訊
The proposition is trivially true if e >= 2. Assume that 0<e<2 is fixed, choose the sequence {r_n} of rational numbers in [0,1] such that r_1 = 0, r_2 < e/4, r_3 < e/8, ... , r_k < e/(2^k) for some k depending on e to be fixed later. Note that I_2, I_3, ..., I_k are subsets of I_1, and all these sets are bounded above by e/2 < 1. The length of I_n(e) is equal to 1/2^(n-1), so the infinite sum of the lengths of I_(k+1), I_(k+2), ... is 1/2^(k-1). Now choose k such that 1/2^(k-1) < 1 - e/2. Suppose [0,1] is covered by {I_n(e)}, by compactness, we can take a finite subcover {I_1, I_2, ..., I_m}. If m <= k, then clearly 1 is not in the union. If m > k, then the sum of the lengths of I_(k+1), ..., I_m is less than 1 - e/2, impossible to cover [e/2,1]. So the proposition may not hold if e<2. ※ 引述《kyoiku (生死間有大恐怖)》之銘言: : [0,1] 上的有理點可列,令其為 {r_1,r_2,r_3,...}。 : 給定 e>0,令 : I_n(e) = (r_n - e/2^n , r_n + e/2^n) : B(e) = the union of all open interval I_n(e) for n = 1,2,3,... : 則 B(e) 包含 [0,1] for every e>0 : 上面的推論是否正確,是的話請證明之,否則給反例。 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 219.79.51.12 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1421186330.A.09A.html
kyoiku : 謝啦,後來有用圖形畫出反例不過寫不出來 @@ 01/14 16:12