看板 Math 關於我們 聯絡資訊
距離上次分享題目也隔了好長一段時間,中間有點太忙了。 最近應該會按一個禮拜一篇的速度分享這則競賽的題目。 由於次方在BBS上的表達比較困難,所以可能會以aa代替a平方,aaa代替a三次等 1st On-line Inequality Competition                      October 26,2014 9:00 to 12:00(GMT+8) Problem 4.  Let a1,...,an be the positive reals that satisfy a1a2...an=2^n. Prove that:           n-1    n-1       n-1          a1    a2       an       n + ------- + ------- + ... + ------- ≧ a1 + a2 + ... + an           n-1    n-1       n-1          a2    a3       a1 Problem 5.  Let a,b,c be positive reals satisfy aa + bb + cc = 1/3. Prove that:            a      b      c     3         ---------- + ---------- + ---------- ≦ ---          √(a+bb)   √(b+cc)   √(c+aa)   2 Problem 6.  Let a,b,c be positive reals satisfy aa + bb + cc = 3. Prove that:        4(aaa+bbb+ccc) + 3(aabb+bbcc+ccaa) + 2abc≦23 出處: https://www.facebook.com/profile.php?id=100004950046279 希望大家覺得這些題目有趣:) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.162.57.108 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1425342539.A.998.html
WasabiSushi : Thank you for sharing with us. But how can we 03/03 18:46
WasabiSushi : find the solutions if we cannot prove them? 03/03 18:47
t0444564 : Dicuss with people because we have no offical 03/04 23:44
t0444564 : solution. 03/04 23:44