推 Ericdion : 謝謝!!!! 03/18 21:59
※ 引述《Ericdion ( 由心出發 )》之銘言:
: 兩題,第296與309
: 想了幾天還是沒找到方法
: 請高手指教,感恩!!!
: http://i.imgur.com/1tTQBn5.jpg
: http://i.imgur.com/3XhdqAp.jpg
: -----
: Sent from JPTT on my Asus PadFone T004.
309.
(x + y + z) * (x^2 + y^2 + z^2)
= (x^3 + y^3 + z^3) + [x^2(y + z) + y^2(z + x) + z^2(x + y)]
= (x^3 + y^3 + z^3) - 24
(x + y + z)^2
= (x^2 + y^2 + z^2) + 2(xy + yz + zx)
=> 9 = (x^2 + y^2 + z^2) + 2(xy + yz + zx)
1/x + 1/y + 1/z = (xy + yz + zx)/(xyz) = -1/3
x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)
= (x^3 + y^3 + z^3) - 24 + (x + y + z)*(- xy - yz - zx)
=> 9(xy + yz + zx) = - 24 + (-3)*(- xy - yz - zx)
=> xy + yz + zx = -4
=> 9 = (x^2 + y^2 + z^2) + 2(xy + yz + zx)
= (x^2 + y^2 + z^2) - 8
=> x^2 + y^2 + z^2 = 17
=> (x^3 + y^3 + z^3) - 24 = (x + y + z) * (x^2 + y^2 + z^2)
= -3 * 17
= -51
=> x^3 + y^3 + z^3 = -27
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.252.195.140
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1426686601.A.7D6.html