推 justinj : y(0)=y(t=0)..標一下 04/02 08:40
※ 引述《viwa77068194 (Yvette)》之銘言:
: y^3+xy=x^2+5 and x^3+xt+1=0. Find dy/dt|t=0 =?
: A:-4/33
: 想請問這題要怎麼解?
: 謝謝~
3y'y^2 + y + xy' = 2x
這裡的y' 表示 dy/dx
3x'x^2 + tx' + x = 0
這裡的x' 表示 dx/dt
=> x'(0){3[x(0)]^2 + t} + x(0) = 0
我有符號說明喔 不要弄混
[x(0)]^3 + 1 = 0
=> x(0) = -1
=> x'(0) = 1/3
y^3 + xy = x^2 + 5
=> y(0) = 2
=> y' = -4 / 11
所以dy/dt = y' * x'
= -(4 / 11) * (1 / 3)
= -4 / 33
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.228.133.210
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1427903496.A.B08.html