推 akiu072 : 謝謝! 05/16 22:31
※ 引述《akiu072 (Bin)》之銘言:
: 設Q(X)=x^2 + 2y^2 + 2yz + 2z^2 = 1
: .
: .
: .
: 在計算主軸定理時,依照課本做法都會先拆成一個矩陣
: 然後再求特徵值、特徵向量...
: 後續的做法我應該沒問題,但要怎麼把上述的Q(X)拆成能相乘的矩陣
Since your Q(X) is quadratic, it can be written as
Q(X) = X^{T}EX
where X = [x, y, z]^{T} is a 3-D column vector and
E is the coeff matrix you need
Then, according to your Q(X)
E = [1 0 0
0 2 1
0 1 2]
Easy way to construct E
E_{1,1} correponds to x^2
E_{2,2} to y^2
E_{3,3} to z^2
so 1 means x, 2 means y, and 3 means z
Then the yz in Q(X) corresponds to E_{2,3} (and of course E_{3,2})
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.227.16.157
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1431780340.A.60E.html