看板 Math 關於我們 聯絡資訊
※ 引述《akiu072 (Bin)》之銘言: : 設Q(X)=x^2 + 2y^2 + 2yz + 2z^2 = 1 : . : . : . : 在計算主軸定理時,依照課本做法都會先拆成一個矩陣 : 然後再求特徵值、特徵向量... : 後續的做法我應該沒問題,但要怎麼把上述的Q(X)拆成能相乘的矩陣 Since your Q(X) is quadratic, it can be written as Q(X) = X^{T}EX where X = [x, y, z]^{T} is a 3-D column vector and E is the coeff matrix you need Then, according to your Q(X) E = [1 0 0 0 2 1 0 1 2] Easy way to construct E E_{1,1} correponds to x^2 E_{2,2} to y^2 E_{3,3} to z^2 so 1 means x, 2 means y, and 3 means z Then the yz in Q(X) corresponds to E_{2,3} (and of course E_{3,2}) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.227.16.157 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1431780340.A.60E.html
akiu072 : 謝謝! 05/16 22:31