看板 Math 關於我們 聯絡資訊
※ 引述《turboho (西卡拉)》之銘言: : 最近作一個問題的時候遇到的東西,但是一直找不出證明或反例,丟上來給大家試試 : 問題:是否存在這樣的 group G 同時滿足下列條件: : 1) G is nilpotent : 2) G is finitely generated : 3) G is infinite : 4) Z(G) (G 的 center) is finite : 我自己的猜測是不存在,即為 : Any finitely generated infinite nilpotent group has infinite center : 不過我不會證 XD 的確是沒有這種G upper central series 1=Z_0(G) < Z_1(G) < Z_2(G) < Z_3(G) < ... < Z_c(G)=G Lemma: If Z_1(G) has exponent e, then all Z_{i+1}(G)/Z_i(G) has exponent dividing e. Proof: Enough to show i=1. So let x in Z_2(G) and g in G. Then [x,g] in Z(G) and so 1=[x,g]^e=[x^e,g] So x^e in Z(G), as desired. QED. Corollary: Z(G) finite, G f.g. nilpotent => G finite. Proof: From lemma, G has finite exponent. So the abelianization G_ab is a finite abelian group. Now each of the successive quotients of the lower central series is a homomorphic image of a tensor power of G_ab, so are finite. So G is finite. QED. -- 『我思故我在』怎樣從法文變成拉丁文的: je pense, donc je suis --- René Descartes, Discours de la Méthode (1637) ego sum, ego existo --- ____, Meditationes de Prima Philosophia (1641) ego cogito, ergo sum --- ____, Principia Philosophiae (1644) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 101.3.43.5 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1434912774.A.F7F.html
turboho : 太感謝了! 06/22 16:24