推 turboho : 太感謝了! 06/22 16:24
※ 引述《turboho (西卡拉)》之銘言:
: 最近作一個問題的時候遇到的東西,但是一直找不出證明或反例,丟上來給大家試試
: 問題:是否存在這樣的 group G 同時滿足下列條件:
: 1) G is nilpotent
: 2) G is finitely generated
: 3) G is infinite
: 4) Z(G) (G 的 center) is finite
: 我自己的猜測是不存在,即為
: Any finitely generated infinite nilpotent group has infinite center
: 不過我不會證 XD
的確是沒有這種G
upper central series 1=Z_0(G) < Z_1(G) < Z_2(G) < Z_3(G) < ... < Z_c(G)=G
Lemma: If Z_1(G) has exponent e, then all Z_{i+1}(G)/Z_i(G) has exponent
dividing e.
Proof: Enough to show i=1.
So let x in Z_2(G) and g in G. Then [x,g] in Z(G) and so
1=[x,g]^e=[x^e,g]
So x^e in Z(G), as desired. QED.
Corollary: Z(G) finite, G f.g. nilpotent => G finite.
Proof: From lemma, G has finite exponent.
So the abelianization G_ab is a finite abelian group.
Now each of the successive quotients of the lower central series is a
homomorphic image of a tensor power of G_ab, so are finite.
So G is finite. QED.
--
『我思故我在』怎樣從法文變成拉丁文的:
je pense, donc je suis --- René Descartes, Discours de la Méthode (1637)
ego sum, ego existo --- ____, Meditationes de Prima Philosophia (1641)
ego cogito, ergo sum --- ____, Principia Philosophiae (1644)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 101.3.43.5
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1434912774.A.F7F.html