作者kerwinhui (kezza)
看板Math
標題Re: [中學] 103新店高三段考橢圓參數式
時間Thu Sep 10 00:14:33 2015
※ 引述《dramatic0306 (悶騷)》之銘言:
: 題目是這樣
: 圓(x+4)^2 +(y-3)^2 = 1上一點P
: 橢圓(x^2)/9 + (y^2)/1 = 1上一點Q
: 求PQ線段最大值?
: 我知道利用圓心到橢圓求極值再加圓半徑,可是問題會卡在圓心到橢圓利用參數式,代兩點
: 間距離公式後會配不出來(不知道怎麼配)
: 感謝大家撥空看看了~~!!
的確不好配,會要解一元四次方程
橢圓點 Q(3 cos Θ, sin Θ) 距離 (-4,3) 極值,所以
(-4-3cosΘ,3-sinΘ) . (3 sinΘ,-cosΘ) = 0
即 12sinΘ+8sinΘcosΘ+3cosΘ=0
設 t=tan(Θ/2), 則 sinΘ=2t/(1+t^2), cosΘ=(1-t^2)/(1+t^2) 可得
3 t^4 - 8 t^3 - 40 t - 3 = 0
有兩個實根,約在 t=-0.075 和 t=3.675
如果你想看,代進
http://www.curtisbright.com/quartic/quartic-png.html 的
兩個實根是:
t = 2/3+1/(3 sqrt(2/(8-(89 3^(2/3))/(2592+sqrt(8833371))^(1/3)+(3
(2592+sqrt(8833371)))^(1/3))))-1/2 sqrt(32/9-(2
(2592+sqrt(8833371))^(1/3))/(3 3^(2/3))+178/(3 (3
(2592+sqrt(8833371)))^(1/3))+424/9 sqrt(2/(8-(89
3^(2/3))/(2592+sqrt(8833371))^(1/3)+(3 (2592+sqrt(8833371)))^(1/3))))
和
t = 2/3+1/(3 sqrt(2/(8-(89 3^(2/3))/(2592+sqrt(8833371))^(1/3)+(3
(2592+sqrt(8833371)))^(1/3))))+1/2 sqrt(32/9-(2
(2592+sqrt(8833371))^(1/3))/(3 3^(2/3))+178/(3 (3
(2592+sqrt(8833371)))^(1/3))+424/9 sqrt(2/(8-(89
3^(2/3))/(2592+sqrt(8833371))^(1/3)+(3 (2592+sqrt(8833371)))^(1/3))))
--
『我思故我在』怎樣從法文變成拉丁文的:
je pense, donc je suis --- René Descartes, Discours de la Méthode (1637)
ego sum, ego existo --- ____, Meditationes de Prima Philosophia (1641)
ego cogito, ergo sum --- ____, Principia Philosophiae (1644)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.235.202.95
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1441815280.A.33A.html
→ kerwinhui : 忘了說,最大化是在 -0.075 附近的那個 09/10 00:18
推 Tiderus : 第2行(3 sinΘ,-cosΘ)是? 09/10 00:28
推 Desperato : 前者是OQ向量 後者是橢圓過Q點切線的向量 兩者垂直 09/10 01:00
推 LPH66 : 本版先前有個類似題圓心在 (0,4) 那個化簡比較簡單 09/10 09:12
→ LPH66 : 因為一個座標是 0, 距離的式子可以化成同種三角函數 09/10 09:15
→ LPH66 : 這個在 (-4,3) 就比較麻煩了 09/10 09:15