看板 Math 關於我們 聯絡資訊
※ 引述《rita42027 (CHIEN)》之銘言: : http://i.imgur.com/x46zMlZ.jpg : 請問(c)怎麼寫? f(x)=(2x+1)/[(x+1)(x-1)^2] = A/(x+1) + B/(x-1) + C/(x-1)^2 A=(x+1)f(x)│ = -1/4 x=-1 B=[(x-1)^2*f(x)]'│ = [1/(x+1)^2]│ = 1/4 x=1 x=1 C=(x-1)^2*f(x)│ = 3/2 x=1 原式 =∫(2x+1)/[(x+1)(x-1)^2] dx =∫ [(-1/4)/(x+1) + (1/4)/(x-1) + (3/2)/(x-1)^2] dx = -(1/4)ln│x+1│+ (1/4)ln│x-1│- (3/2)[1/(x-1)] + c = (1/4)ln│(x-1)/(x+1)│- 3/[2(x-1)] + c -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 122.100.91.75 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1451013465.A.139.html ※ 編輯: wayne2011 (122.100.91.75), 12/25/2015 11:18:54