作者Eliphalet (用字精確點好嗎?)
看板Math
標題Re: [中學] 請教一題方程式
時間Wed Mar 23 18:58:40 2016
※ 引述《klys (小猴仔)》之銘言:
: 已知:2014*x^3 = 2015*y^3 = 2016*z^3,xyz>0
: 且(2014*x^2 + 2015*y^2 + 2016*z^2)^(1/3) = 2014^(1/3) + 2015^(1/3) + 2016^(1/3),
: 求 1/x + 1/y + 1/z = ?
: Ans:1
: 謝謝!
棍,剛剛吃飯時誤認變數,紙上寫的跟電腦打的剛好都用同個變數 = =
---------------------------------------------------------------------------
x,y,z > 0
令 t = 1/x + 1/y + 1/z, s = 2014x^3
由第一組等式
可知 1/x + 1/y + 1/z = s^(-1/3) * (2014^(1/3)+2015^(1/3)+2016^(1/3))
因此可以把第二個等式變成
(st)^(1/3) = s^(1/3)t => t = t^3 解得 t = 1 (其他解不合)
故 1/x+1/y+1/z = 1
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.46.228.236
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1458730722.A.66A.html
※ 編輯: Eliphalet (114.46.228.236), 03/23/2016 22:14:28
→ klys : 不太懂第四行怎麼來的 03/24 16:56
推 LPH66 : s^(1/3)=2014^(1/3)*x=2015^(1/3)*y=2016^(1/3)*z 03/24 18:11
→ LPH66 : 故 1/x=2014^(1/3)/s^(1/3)=2014^(1/3)*s^(-1/3) 03/24 18:12
→ LPH66 : 1/y 1/z 同理再加起來即得此式 03/24 18:12
推 klys : OK 我懂了 謝謝你^^ 03/24 18:43