→ wxtab019 : 等於只知道兩個而已吧 總和=平均*人數 ? 05/12 18:42
是阿 這樣算不出來嗎?
※ 編輯: gigi030507 (111.254.17.79), 05/12/2016 18:47:37
推 phxcon : 不行 05/12 19:07
50.已知一輻射偵檢器之反應時間(time constant)為15秒,則量測結果為450 cpm之標
準差為 多少cpm?
A.15 B.30 C.45 D.50
如何計算呢?
答︰
S=[(450/60)/(2*15)]^(1/2)=0.5 cps=0.5*60 cpm =30 cpm
我會這樣問 是因為剛好有些問題跟我所敘述的很想似
只有平均 跟 人數 然後算標準差
如果真的不行 就算了XDDDDDDD
※ 編輯: gigi030507 (111.254.17.79), 05/12/2016 19:25:43
推 LPH66 : 這個時間常數好像不是平均值而是機率分布的參數 05/12 21:14
有一樣品連同背景一起計數3分鐘,其計數為2,700 counts
,針對背景進行計數3分鐘,其計數為300 counts
,求此樣品的計數率(cpm)及其標準差:
A.800±28.3
B.800±18.3
C.2400±48.9
D.2400±51.9
2700 /3 = 900
300/3 =100
題目會淨化成為 900 、100 、3min
淨計數率= 900-100 =800 cpm
標準差=( 900/3 + 100 /3 )開根號 =根號333.333 =18.25740945 cpm
比較類似的就上面這一題 上面這一題我會 只不過是背公式而已QQ
※ 編輯: gigi030507 (111.254.17.79), 05/12/2016 21:34:33
→ wohtp : 叫全部的人排成一列,一個一個檢查身上帶了多少個原 05/12 23:31
→ wohtp : po要平均的東西。 05/12 23:32
→ wohtp : 這樣想的話,其實是可以套Poisson來用的 05/12 23:32
→ wohtp : 準不準是另一回事 XD 05/12 23:35
→ wohtp : 原po:你舉的那幾個例子都用到Poisson分布 05/12 23:37
→ wohtp : 其中一個重要的前提是取樣的區段是連續的 05/12 23:38
→ wohtp : 例如說時間,你取樣多久就是一個連續的區段,不是 05/12 23:40
→ wohtp : 一個一個這樣子來。 05/12 23:41
→ wohtp : 如果你有平均一分鐘60次,那你只看10秒的話平均應該 05/12 23:42
→ wohtp : 十次,只看一秒平均就一次,只看0.1秒平均0.1次... 05/12 23:43
→ wohtp : 因為可以這樣子分割,還知道分割完的結果,才可以估 05/12 23:44
→ wohtp : 算標準差 05/12 23:44
→ wohtp : 但是你的狀況,「平均一個人五百個,所以半個人有 05/12 23:45
→ wohtp : 兩百五十個」這樣的敘述有沒有意義? 05/12 23:45
→ wohtp : 這你自己才知道了 05/12 23:46
懂了 因為我的敘述是"非連續的"
所以 不太適合用poisson對嗎?
就算可以用 也不一定準XD
那我想請問一下poisson公式是?
不準也沒關西拉 我只是要娶個大概就好
※ 編輯: gigi030507 (111.254.17.79), 05/13/2016 00:08:44
→ yhliu : 平均數 = 總數/資料數, 這和 "標準差" 是無關的. 05/16 19:29
→ yhliu : 例如所舉幅射之例, 可能是假設為 Poisson 分布, 所 05/16 19:31
→ yhliu : 以平均數和標準差是直接相關聯的. 另外能由平均數 05/16 19:32
→ yhliu : 決定標準差的是二項分布(須知道n), 負二項分布(知r) 05/16 19:34
→ yhliu : 指數分布等極少數特殊分布. 05/16 19:34