看板 Math 關於我們 聯絡資訊
※ 引述《YeeYeeYee (Yeeeeee)》之銘言: : 大家好 : 我想請教一個關於機率的問題 題目如下 : 教授知道有15%的學生在上課時玩手機 但不確定是那些人 : 他隨機選了五個學生出來 請問 : 1.五個裡面沒有人是在玩手機的機率是多少 假設有n位學生 P(0.75n,5) ------------ P(n,5) : 2.五個裡面剛好只有一個在玩手機的機率是多少 C(0.15n,1)C(0.75n,4)(5!) --------------------------- P(n,5) : 3.至少兩個人在玩手機的機率是多少 [C(0.75n,5)+C(0.75n,4)C(0.15n,1)](5!) 1- ------------------------------------------ P(n,5) : 另外一題也是類似的題目 : 當地的居民知道每年有30%的日子會下雨 如果隨機選五天 : 請問至少1天會下雨的機率是多少 不曉得你的意思是不是每天下雨的機率都是30%? 因為如果每年有30%的日子下雨,365*0.3=109.5 不是一個整數 : 請問這種類型的題目到底應該怎麼算? 概念是甚麼? -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.113.123.148 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1465373163.A.998.html
softseaweed : 浮點數*n不是整數你的式子就爛掉了 06/08 16:12
題目的單位是學生,所以0.15n跟0.75n一定是非負整數 ※ 編輯: nnnn (140.113.123.148), 06/08/2016 16:19:08
yhliu : 不能假設 n 是多少, 那 "有15%..." 應視為一個無限 06/10 08:04
yhliu : 群體的比例. 就好像在製程品管說 "不良率1%" 而問 06/10 08:06
yhliu : 從一批製品抽出50個至少1個不良品機率時, 不必問當 06/10 08:07
yhliu : 初得到不良率1%之結果其樣本或群體大小, 也與當前 06/10 08:09
yhliu : 批量大小無關, 只當那1%可適用於當前問題. 06/10 08:10
yhliu : 也就是說, 不應看成是有限群體抽樣, 而是無限群體. 06/10 08:12