看板 Math 關於我們 聯絡資訊
※ 引述《su9958 (su9958)》之銘言: : http://i.imgur.com/i7mJSiR.jpg : 真的想了好久 : 找不到F(X)的微分規律 : 需要提點 謝謝 感激不盡 若 q(x) = p(x)*e^(-x^2) 則 q'(x) = p'(x)*e^(-x^2) + p(x)*(-2x)*e^(-x^2) = (p'(x) - 2xp(x))e^(-x^2) 所以要求各階微分一次一次代下去即可 p(x) = 1 => p'(x) - 2xp(x) = -2x p(x) = -2x => p'(x) - 2xp(x) = 4x^2 - 2 p(x) = 4x^2 - 2 => p'(x) - 2xp(x) = -8x^3 + 12x 繼續算下去是 16x^4 - 48x^2 + 12 -32x^5 + 160x^3 - 120 64x^6 - 480x^4 + 720x^2 - 120 所以所求的六階泰勒展開式即為 1 - 2x^2/2! + 12x^4/4! - 120x^6/6! = 1 - x^2 + x^4/2 - x^6/6 接下來的積分近似就略過了 ==== 重點是這題只要你求六階近似 那麼既然最多就微六次, 先微再說, 有沒有規律都沒差 又不是要你寫整個級數出來 -- 'You've sort of made up for it tonight,' said Harry. 'Getting the sword. Finishing the Horcrux. Saving my life.' 'That makes me sound a lot cooler then I was,' Ron mumbled. 'Stuff like that always sounds cooler then it really was,' said Harry. 'I've been trying to tell you that for years.' -- Harry Potter and the Deathly Hollows, P.308 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.195.53.205 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1466541422.A.8A5.html
suhorng : 這題有沒有可能只是要展開到六次然後積分? 06/22 16:40
suhorng : 喔..這個是直接展開沒錯 06/22 17:59