作者Desperato (Farewell)
看板Math
標題Re: [中學] 絕對值方程式
時間Thu Sep 29 22:16:10 2016
※ 引述《starshiny (璀璨星辰)》之銘言:
: 試問滿足|a+b|+c=19且ab+|c|=97的整數解(a,b,c)共有幾組?
: 自己有嘗試著求解
: 可是怎麼算都只能求出兩組解
: 跟解答差有點多QAQQQQQ
: 懇求各位大大一起集思廣益
c <= 19, ab <= 97
a+b = +-(19-c)
ab = 97-|c|
a, b are roots of x^2 -+ (19-c) + (97-|c|)
D = (19-c)^2 - 4(97-|c|) | = c^2 - 34c - 27, c>=0 | = k^2, k integer >= 0
| |
| = c^2 - 42c - 27, c <0 |
c>=0, (c-17)^2 - k^2 = (c-17-k)(c-17+k) = 289+27 = 316 = 4 * 79
2* 1 2*79 k=78, c-17= 80, c不合 (c <= 19)
-2*79 -2* 1 k=78, c-17=-80, c不合
c <0, (c-21)^2 - k^2 = (c-21-k)(c-21+k) = 441+27 = 468 = 4 *117
(c-21-k < 0) -2*117 -2* 1 k=116, c-21=-118, c=-97
-2* 39 -2* 3 k= 36, c-21= -42, c=-21
-2* 13 -2* 9 k= 4, c-21= -22, c= -1
a, b=(1/2)( +-(19-c) +-k )
k | c | 19-c+k | 19-c-k | (a, b)
---------------------------------------------------------------------
116 | -97 | 232 | 0 | (116, 0) (-116, 0) (0, 116) (0, -116)
---------------------------------------------------------------------
36 | -21 | 76 | 4 | (38, 2) (-38, -2) (2, 38) (-2, -38)
---------------------------------------------------------------------
4 | -1 | 24 | 16 | (12, 8) (-12, -8) (8, 12) (-8, -12)
以上騙P幣ow o
其實我原本忘記c <= 19, 驗算的時候多了一組
--
嗯嗯ow o
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 49.214.167.64
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1475158574.A.17B.html
推 LPH66 : 啊, 忘記拆 117 了所以只做出四組... 09/29 22:30
推 starshiny : 看不太懂怎麼變成a,b are roots of x^2 這段 09/29 23:22
→ Desperato : 根與係數的關係 09/29 23:24
推 starshiny : 因為沒化成x^2-(a+b)x+ab=0形式一下子沒反應過來XD 09/29 23:27
推 LPH66 : 其實判別式本質上就是 (a-b)^2 09/30 00:45
→ LPH66 : 所以直接算這東西也會變成同一個式子 09/30 00:45