看板 Math 關於我們 聯絡資訊
※ 引述《hau (小豪)》之銘言: : 我讀 Hartshorne 的 Algebraic Geometry : 作到 P.68 1.19 的(b) : Let X be a topological space, let Z be a closed subset, U = X-Z : j : U → X be its inclusion. : (b) F be a sheaf on U. ( j_!(F) )_p is equal to F_p if p ∈ U, : 0 if p is not belongs to U. : 後面要證明 j_!(F) is the only sheaf on X which has this property. : 唯一性這裡,我想到假設有另一個sheaf滿足這個性質,想證明它們是isomorphism : 可是我定不出morphism,我覺得我根本想錯證法。 : 直覺上是對的,但這個要怎麼看??~~ 你漏了 j_!(\mathscr{F}) is the only sheaf on X which as this property, and whose restriction to U is \mathscr{F}. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 最後這個 clause 很關鍵,拿來定 morphism ( j_!(F)(V) -> G(V) ) = { identity, V subseteq U { 0 , otherwise 然後 induce isomorphism on stalks. -- 『我思故我在』怎樣從法文變成拉丁文的: je pense, donc je suis --- René Descartes, Discours de la Méthode (1637) ego sum, ego existo --- ____, Meditationes de Prima Philosophia (1641) ego cogito, ergo sum --- ____, Principia Philosophiae (1644) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.101.8 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1475554197.A.B0C.html
hau : 謝謝!我知道了。 10/05 22:41