作者cuttlefish (無聊ing ><^> .o O)
看板Math
標題Re: [代數]請前輩指點一下整數証明~急!謝謝
時間Wed Oct 5 11:36:53 2016
※ 引述《rfvbgtsport (uygh)》之銘言:
: 若a,b,c為整數,且a/b+b/c+c/a為整數,b/a
: +c/b+a/c亦為整數,証明丨a丨=丨b丨=丨c丨
: 請高手幫忙一下,謝謝
Without loss of the generality, we may assume gcd(a, b, c) = 1.
Let Z1 = a/b + b/c + c/a and Z2 = b/a + c/b + a/c, so Z1 and Z2 are
two integers. Note that Z1 + Z2 + 3 = (a + b + c)(ab + bc + ca) / abc
is an integer. Thus a | (a + b + c)(ab + bc + ca) => a | bc(b + c).
Since b(b + c)Z1 = a(b + c) + b^2(b + c)/c + bc(b + c)/a, we have c | b^3.
Similarly, c | a^3. Then c | gcd(a^3, b^3, c^3) = 1 => |c| = 1.
Similar argument for a and b, one has |a| = |b| = |c| = 1.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 97.99.68.240
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1475638617.A.948.html
推 Desperato : 推推推推推想超久qw q 10/05 12:26
推 rfvbgtsport : 感謝大大們 10/05 15:35