→ Desperato : 你的方法應該比我的好 我打算暴力幹出來(? 11/03 23:15
: Let f:R->R+ be a Lebesgue integrable function.
: Prove that for almost every real number x, we
: have f(n+x)->0 when |n|->infty (n integer)
後來自己想到解法了
(板上大大的提示對小弟太過隱晦)
(考慮canonic projection R->R/Z、無窮大附近積分->0)
設 g:[0,1]->R+ union {+infty}
x|->sum f(n+x) for n in Z
有個結果是
int on [0,1] g = int on R f <+infty (f integrable)
So g is integrable, and g is finite a.e.
id est sum f(n+x) is finite a.e.
So f(n+x)->0 a.e. (summable sequence)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 86.247.217.159
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1478170612.A.D72.html