作者hau (小豪)
看板Math
標題基礎拓樸
時間Sun Nov 6 08:10:49 2016
( 見 Munkers 的 Topology, second edition. P.286 )
書上有定理(P.285)
Theorem 46.8. Let X be a space and let (Y,d) be a metric space. On the set
C(X,Y) , the compact-open topology and the topology of compact convergence
coincide.
(P.286)
Corollary 46.9. Let Y be a metric space. The compact convergence topology on
C(X,Y) does not depend on the metric of Y. ......
上面的 Corollary 看不懂,
雖然 TH 46.8 說明了the compact-open topology 和
the topology of compact convergence 是一樣的,但是若 Y 的 metric 改變,還是會
影響 compact-open topology,也就影響 compact convergence topology.
另外我也想過,先給定 X: topological space, (Y,d): metric space. f in C(X,Y)
若 d' 為 Y 的另一個 metric,考慮 f: X → (Y,d') . 那麼 f 可能不是連續函數.
--
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 112.104.139.224
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1478391052.A.019.html
→ kerwinhui : compact-open topology on C(X,Y) only depend on 11/06 13:26
→ kerwinhui : the topologies on X,Y and not the metric on Y 11/06 13:27
→ kerwinhui : Y的metric改變只能在其homeomorphism class裡面選, 11/06 13:28
→ kerwinhui : 所以choice of metric並不影響 11/06 13:28