看板 Math 關於我們 聯絡資訊
※ 引述《rey9810 (RaY)》之銘言: : http://i.imgur.com/0TSjO1p.jpg : 這題不知道該怎麼令 : 請提示我一點 感謝 新年快樂! : ----- : Sent from JPTT on my LGE LG-H788. log(3x) - [log(3x)] = 3{log(x) - [log(x)]} log(3x) = log(3) + log(x) log(x) = z + a, z為非負整數, 0 <= a < 1 設k, q為正整數 -k <= log(3) + log(x) < -k+1 (10^(-k))/3 <= x < 10 * (10^(-k))/3 有下列情況 (1)10^(-k)/3 <= x < 10^(-k) log(3) + log(x) + k = 3[log(x) + k + 1] => log(x^2) = log(3) - 2k - 3 => x = √[30 * 10^(-2k) * 10^(-4)] = √30 * 10^(-k-2) 不合 (2)10^(-k) <= x < 10 * (10^(-k))/3 log(3) + log(x) + k = 3[log(x) + k] => log(x^2) = log(3) - 2k => x = √[3 * 10^(-2k)] = √3 * 10^(-k) (k = 1, 2, 3... 設k為非負整數 k <= log(3) + log(x) < k+1 => (10^k)/3 <= x < (1/3) * 10^(k+1) (3) (10^k)/3 <= x < 10^(k+1) log(3) + log(x) - k = 3[log(x) - k] => log(x^2) = log(3) + 2k => x = √3 * 10^k (k = 0, 1, 2...) (4) 10^(k+1) <= x < (1/3) * 10^(k+1) log(3) + log(x) - k = 3[log(x) - k - 1] => log(x^2) = log(3) + 2k + 3 => x = √30 * 10^(k+1) 不合 總結 x = √3 * 10^(k), k = 整數 x^2 = 3 * 10^(2k), k = 整數 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.187.162 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1483246782.A.648.html
rey9810 : 哇 難過沒有詳解 感謝! 01/01 13:27