看板 Math 關於我們 聯絡資訊
※ 引述《nokol (騷人墨客)》之銘言: : http://i.imgur.com/Alnj0r5.jpg : 第七題,想請教各位大師如何證明~ : 感謝各位大師指點,謝謝您,謝謝。 : ----- : Sent from JPTT on my Samsung SM-G935F. 搶時效,所以方法爛,但是可以證 分三個部分 (1)當FD在AD上: E對FD做垂線交FD於J ∠FEJ = ∠BAD = 30 ∠AJE = ∠AEJ = 60 => ∠AEF = 30 = ∠EAF => AF = FE (2)當F和E在AD的異側: F對BD垂線交AD於K,交ED於M ∠BAD = 30 = ∠EFM => ∠AEF = ∠FKA = ∠MKD ∠BDE = a => ∠ADF = a - 30 做△EFD外接圓交AB於Q,交AD於R ∠DQE = ∠DFE = 60 => ∠ADQ = ∠DQE - ∠BAD = 30 => ∠QEF = ∠QDF = ∠ADQ + ∠ADF = 30 + (a - 30) = a => ∠AER = ∠QEF - ∠REF = ∠QEF - ∠ADF = a - (a - 30) = 30 => AR = RE => R在AE的中垂線上 又∠RFE = ∠RDE = 90 - ∠BDE = 90 - a 因為∠QEF = a,所以FR延長線會垂直於AE => F亦落在AE的中垂線上 => AF = FE (3)當FE在AD的同側: ∠AEF = ∠BDE = a => ∠ADF = 30 - a 做△EFD外交圓交AB於N,交AD於P => ∠PEA = ∠PDF + ∠AEF = (30 - a) + a = 30 => AP = PE 又∠FPE = ∠FDE = 60 且∠PEA = 30 = ∠EAP => PF平分∠APE 延長PF交AB於H, 因為∠EPH = 60, ∠PEH = 30 => ∠HPE = 90 => PH為等腰△AFE的中垂線 => AF = FE -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.56.10.112 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1483682193.A.D3A.html