看板 Math 關於我們 聯絡資訊
※ 引述《harry921129 (哈利~~)》之銘言: : c^2 = a^2 + b^2 : 且 : b a : --- + ----= 17/20 : a+c b+c : 求 a:b:c ? a b 令--- = x , --- = y c c 則 x^2 + y^2 = 1 且 1 1 17 ---------- + ------------ = ---- x 1 y 1 20 --- + --- --- + --- y y x x ==> y x 17 ------- + ------- = ---- x + 1 y + 1 20 ==> x + y + 1 17 ---------------- = ---- (x + 1)(y + 1) 20 17xy +17(x+y) + 17 = 20(x+y) + 20 17xy - 3(x+y) - 3 = 0 34xy - 6(x+y) - 6 = 0 17[(x+y)^2 - (x^2 + y^2)] - 6(x+y) - 6 = 0 令 A = x+y 17(A^2 - 1) - 6A - 6 = 0 17A^2 - 6A - 23 = 0 (17A - 23)(A + 1) = 0 A = x+y = 23/17 or -1(不合) 7 (x-y)^2 = 2(x^2 + y^2) - (x+y)^2 = 2 - (x+y)^2 = (--)^2 17 ==> x - y = ±7/17 I II x + y 23/17 23/17 x - y 7/17 -7/17 x 15/17 8/17 y 8/17 15/17 a:b:c I. 15/17 : 8/17 : 1 = 15 : 8 : 17 II. 8/17 : 15/17 : 1 = 8 : 15 : 17 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.240.102.135 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1484749311.A.288.html ※ 編輯: Tiderus (123.240.102.135), 01/18/2017 23:31:11