看板 Math 關於我們 聯絡資訊
※ 引述《hsnu310659 (Tang)》之銘言: : http://imgur.com/pdfRIeu : http://imgur.com/I5PW3gr 4. (a) a_n = a_(n-1) + 2a_(n-2) a_0 = 1 a_1 = 1 (b) [ a_n ] = [1 2][ a_(n-1) ] [a_(n-1)] [1 0][ a_(n-2) ] [1 2] = P [1 0] (c) Q = [2 1] [1-1] Q^(-1) = (-1/3)[-1 -1] [-1 2] (d) R = Q^(-1)PQ = (-1/3)[-2 -2][2 1] [ 1 -2][1-1] = (-1/3)[-6 0] [ 0 3] = [2 0] [0-1] (e) 應該是a_n吧 [ a_n ] = [1 2]^(n-1)[ a_1 ] [a_(n-1)] [1 0] [ a_0 ] = Q [2^(n-1) 0 ] Q^(-1) [1] [ 0 (-1)^(n-1)] [1] a_n = (-1/3)[-2^(n+1) + (-1)^(n+1)] = (2/3)*2^n + (1/3)(-1)^n : 求解這三題要怎麼做呢~ : 一直寫不出來也跟班上討論過了QQ : 拜託大家了!! -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.190.148 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1491247806.A.3DA.html
hsnu310659 : 謝謝原po 04/05 08:21