看板 Math 關於我們 聯絡資訊
※ 引述《inch01742 (穎奇種筍子)》之銘言: : http://i.imgur.com/ZdRX9qT.jpg : 想請教第二小題該如何下手 : ----- : Sent from JPTT on my Samsung SM-N9208. (1) f(-x) = (k + 4[sin(x)]^2)cos(-2x + θ) 要求 = -f(x) => cos(-2x + θ) = -cos(2x + θ) => θ = -3π/2 或者 cos(2x)cosθ + sin(2x)sinθ = -cos(2x)cosθ + sin(2x)sinθ => cosθ = 0 => θ = -3π/2 所以f(x) = -(k + 4[sin(x)]^2)sin(2x) f(3π/4) = 0 => 0 = (k + 2) = 0 => k = -2 (2) f(α/8) = 3/5 = -(-2 + 4[sin(α/8)]^2)sin(α/4) = (2 - 2 + 2cos(α/4))sin(α/4) = sin(α/2) => cos(α/2) = 4/5 => sin(α) = 2 * 4/5 * 3/5 = 24/25 cos(α) = 7/25 => sin(α - π/6) = 24/25 * (1/2)√3 - (7/25) * 1/2 = (12/25)√3 - 7/50 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.176.24 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1492945555.A.917.html