看板 Math 關於我們 聯絡資訊
※ 引述《BrowningZen (BrowningZen)》之銘言: : a我硬是用integral test避開了問題,請問有其他方法嗎? : 請問b要怎麼做呢,除了把整條式子變成a的形式後就沒有頭緒了 : 謝謝各位 : http://i.imgur.com/b3vpWTg.jpg (a) if k > 1 then 1 1 1 1 1 1 --- + --- + --- + --- + ... + --- + --- + ... 1^k 2^k 3^k 4^k 7^k 8^k 1 1 1 1 1 1 < --- + --- + --- + --- + ... + --- + --- + ... converges 1^k 2^k 2^k 4^k 4^k 8^k 可以查Cauchy condensation test (b) Let t = beta/2 There exists some natural number N0 such that |b_(k+1)| k > N0 implies k(--------- - 1) < - 1 - t |b_k| 1+t Then |b_(k+1)| < |b_k| (1 - ---) k M Now let a_k = ----------- (k-1)^(1+t) a_(k+1) k-1 1+t Then ------- = (---)^(1+t) > (1 - ---) a_k k k (by binomial theorem and alternating series) Then |b_k| < a_k implies 1+t |b_(k+1)| < a_k (1 - ---) < a_(k+1) k choose a_1 > |b_1| and some a_2 = M > |b_2| Then above gives an induction prove for |b_k| < a_k for all k sum a_k converges by (a) -- 嗯嗯ow o -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1493909656.A.F08.html
Desperato : 啊啊不對 k要大於N0才行 反正改一改就好 05/04 22:56
BrowningZen : 謝謝大大 真的完全想不到! 05/04 23:18
yyc2008 : k > N0那一行 怎麼知道是小於? 不等號左邊是不是要 05/05 23:19
yyc2008 : 加大絕對值框住左邊所有項? 05/05 23:20
Let t = beta/2 There exists some natural number N0 such that | |b_(k+1)| | k > N0 implies | k(--------- - 1) - (- 1 - 2t) | < t | |b_k| | 拆絕對值 把(-1-2t)往右丟過去 ※ 編輯: Desperato (140.112.25.105), 05/06/2017 03:09:24
yyc2008 : 謝謝 看懂了 05/07 01:11