看板 Math 關於我們 聯絡資訊
※ 引述《ccz0123 (ccz)》之銘言: : http://i.imgur.com/s1W0j8R.jpg : 大一微積分 : 求解 37、38 : 請板上各位神人幫忙 謝謝 : 小弟經濟狀況清寒 : 無法發p幣 : 抱歉! <Rolle's Theorem> If f is continous on [a,b] and differentiable on (a,b) and f(a)=f(b)=0 Then there exists c€(a,b) such that f'(c) = 0 ---------------------------------------- [37] Let f(t) = g(t)-h(t) the same as in the hint Then g(0)=h(0) (start at the same time) g(T)=h(T) (finish in a tie 平手=同時間抵達) hence f(0)=f(T)=0, then by Rolle's thm we know f'(c) = 0 which implies g'(c)=h'(c) Note: derivative of position function is speed [38] Assume there exist a,b two distinct points such that f(a)=a, f(b)=b Let g(x)=f(x)-x, then g(a)=g(b)=0. Hence by Rolle's thm we know g'(c)=f'(c)-1=0 => f'(c)=1, contradictory -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.255.19.59 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1500301850.A.E73.html ※ 編輯: znmkhxrw (111.255.19.59), 07/17/2017 22:34:39
ccz0123 : 謝謝Z大的即時幫忙!小弟已經懂了! 07/17 23:03