推 ccz0123 : 謝謝Z大的即時幫忙!小弟已經懂了! 07/17 23:03
※ 引述《ccz0123 (ccz)》之銘言:
: http://i.imgur.com/s1W0j8R.jpg
: 大一微積分
: 求解 37、38
: 請板上各位神人幫忙 謝謝
: 小弟經濟狀況清寒
: 無法發p幣
: 抱歉!
<Rolle's Theorem>
If f is continous on [a,b] and differentiable on (a,b)
and f(a)=f(b)=0
Then there exists c€(a,b) such that f'(c) = 0
----------------------------------------
[37]
Let f(t) = g(t)-h(t) the same as in the hint
Then g(0)=h(0) (start at the same time)
g(T)=h(T) (finish in a tie 平手=同時間抵達)
hence f(0)=f(T)=0, then by Rolle's thm we know f'(c) = 0
which implies g'(c)=h'(c)
Note: derivative of position function is speed
[38]
Assume there exist a,b two distinct points such that f(a)=a, f(b)=b
Let g(x)=f(x)-x, then g(a)=g(b)=0.
Hence by Rolle's thm we know g'(c)=f'(c)-1=0 => f'(c)=1, contradictory
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.255.19.59
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1500301850.A.E73.html
※ 編輯: znmkhxrw (111.255.19.59), 07/17/2017 22:34:39