看板 Math 關於我們 聯絡資訊
※ 引述《peter015 (hi)》之銘言: : (1+x+x^2+x^3+x^4+x^5)^2015乘(1-x+x^2-x^3+x^4-x^5)^2015 : 展開式中X的253次方項的係數為何? : 謝謝~ 先化簡原多項式: 原式 = {(1+x+x^2+x^3+x^4+x^5)(1-x+x^2-x^3+x^4-x^5)}^2015 = {[(1+x^2+x^4)+(x+x^3+x^5)][(1+x^2+x^4)-(x+x^3+x^5)]}^2015 = {(1+x^2+x^4)^2 - (x+x^3+x^5)^2}^2015 = {(1+x^2+x^4)^2 - x^2 * (1+x^2+x^4)^2}^2015 = {(1-x^2)(1+x^2+x^4)^2}^2015 到這裡應該可以明顯地看出來原式只有偶次方項, 故所求為 0 # -- Ace Snake Santa Clover Junpei June Seven Lotus 9th man cabin kitchen casino shower operating room laboratory T H E chart captain quarter confinement torture room steam engine room cargo chapel library study incinerator Gigantic Q director office security N O N A R Y archives control laboratory pec treatment garden pantry gaulem bay rec room crew quarters infirmary lounge elevator Tenmyouji Quark Dio G A M E S Luna Phi Sigma Alice Clover K -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 180.177.29.238 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1503158336.A.10B.html
peter015 : 感謝 08/20 00:01