看板 Math 關於我們 聯絡資訊
※ 引述《liang6159 (liang6159)》之銘言: : 設a,b,c為實數,已知a+2b+3c=4且2ab+6bc+3ac=5,若c最大值M,c最小值m,則M+m=?答案是8/9請教如何解題,謝謝! a + 2b = 4 - 3c 2ab + 3c(2b + a) = 5 => 2ab + 3c(4 - 3c) = 5 => 2ab = 5 - 12c + 9c^2 (5 - 12c + 9c^2)/(a) + a = 4 - 3c => a^2 + (3c - 4)a + (9c^2 - 12c + 5) = 0 => (3c - 4)^2 - 4(9c^2 - 12c + 5) > 0 => 27c^2 - 24c + 4 < 0 => M + m = 24/27 = 8/9 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.173.42 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1503160137.A.2A5.html
Honor1984 : (3c - 4)^2 - 4(9c^2 - 12c + 5) 更改為 >= 0以下同 08/20 00:45
liang6159 : 感謝H大 08/20 08:58