※ 引述《sincere617 (頂著鋼盔往前衝)》之銘言:
: 各位數學大師
: 請問 這兩題 數學歸納法 要怎麼逼出來
: 有甚麼特別技巧
: (a) 1^2-2^2+3^2-4^2+......-(2n)^2+(2n+1)^2=(n+1)(2n+1)
: (b) (1- (1/2))+((1/3)-(1/4))+.....((1/2n-1)-(1/2n)
: =1/(n+1) + 1/(n+2)+.....+1/(2n)
: 感謝大大提示囉 在一次謝謝
(a)
- (2k)^2 + (2k + 1)^2
= 4k + 1
n
Σ(4k + 1) = 2n(n + 1) + n + 1
k=0
= 2n^2 + 3n + 1
= (2n + 1)(n + 1)
數學歸納法
設左式 = S_n
當n = 0顯然吻合
當n = k成立,S_k = (k + 1)(2k + 1)
則n = k + 1時,
S_(k+1) = (k + 1)(2k + 1) - (2k + 2)^2 + (2k + 3)^2
= 2k^2 + 3k + 1 + (4k + 5)
= 2k^2 + 7k + 6
= (2k + 3)(k + 2) 正確
原命題成立
(b)
(1- (1/2))+((1/3)-(1/4))+.....(1/(2n-1)-(1/2n))
= [1 + 1/2 + 1/3 + 1/4 + ... + 1/(2n)] - (1/2)[1 + 1/2 + 1/3 + ... + 1/n]
-(1/2)[1 + 1/2 + ... + 1/n]
= 1/(n+1) + 1/(n+2)+.....+1/(2n)
數學歸納法
設左式 = S_n
n = 1顯然成立
設n = k成立,S_k = 1/(k + 1) + 1/(k + 2) + ... + 1/(2k)
則當n = k + 1
S_(k + 1) = S_k + 1/(2k + 1) - 1/(2k + 2)
= 1/(k + 1) + 1/(k + 2) + ... + 1/(2k) + 1/(2k + 1) - 1/(2k + 2)
= 1/(k + 2) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) 正確
原命題得證
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.168.105
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1505065435.A.C91.html