看板 Math 關於我們 聯絡資訊
※ 引述《sincere617 (頂著鋼盔往前衝)》之銘言: : 各位數學大師 : 請問 這兩題 數學歸納法 要怎麼逼出來 : 有甚麼特別技巧 : (a) 1^2-2^2+3^2-4^2+......-(2n)^2+(2n+1)^2=(n+1)(2n+1) : (b) (1- (1/2))+((1/3)-(1/4))+.....((1/2n-1)-(1/2n) : =1/(n+1) + 1/(n+2)+.....+1/(2n) : 感謝大大提示囉 在一次謝謝 (a) - (2k)^2 + (2k + 1)^2 = 4k + 1 n Σ(4k + 1) = 2n(n + 1) + n + 1 k=0 = 2n^2 + 3n + 1 = (2n + 1)(n + 1) 數學歸納法 設左式 = S_n 當n = 0顯然吻合 當n = k成立,S_k = (k + 1)(2k + 1) 則n = k + 1時, S_(k+1) = (k + 1)(2k + 1) - (2k + 2)^2 + (2k + 3)^2 = 2k^2 + 3k + 1 + (4k + 5) = 2k^2 + 7k + 6 = (2k + 3)(k + 2) 正確 原命題成立 (b) (1- (1/2))+((1/3)-(1/4))+.....(1/(2n-1)-(1/2n)) = [1 + 1/2 + 1/3 + 1/4 + ... + 1/(2n)] - (1/2)[1 + 1/2 + 1/3 + ... + 1/n] -(1/2)[1 + 1/2 + ... + 1/n] = 1/(n+1) + 1/(n+2)+.....+1/(2n) 數學歸納法 設左式 = S_n n = 1顯然成立 設n = k成立,S_k = 1/(k + 1) + 1/(k + 2) + ... + 1/(2k) 則當n = k + 1 S_(k + 1) = S_k + 1/(2k + 1) - 1/(2k + 2) = 1/(k + 1) + 1/(k + 2) + ... + 1/(2k) + 1/(2k + 1) - 1/(2k + 2) = 1/(k + 2) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) 正確 原命題得證 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.168.105 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1505065435.A.C91.html