作者wayne2011 (與美萱將要愛到狂)
看板Math
標題Re: [其他] 三角函數 內心
時間Mon Sep 25 13:06:11 2017
※ 引述《mrjj123 (RRRRRRRR)》之銘言:
: 請問這題要怎麼算呢
: https://i.imgur.com/4ootFwx.jpg
前一陣子講的
亦可再參考"標準奧林匹克數競教程"
當中習題3.1的2nd題
證明1/a = 1/b + 1/c,b+c=bc/a,1/(b+c)=a/bc
CD=ab/(b+c),CE=ab/(c+a)
ab{[1/(b+c)]+[1/(c+a)]}=12[2cos^2(B/2)-1]
(a^2/c)+ab/(c+a)=24cos^2(B/2)-12
(a^2/c)+(a^2/b)=24cos^2(B/2)-12...代b^2=a(c+a),參考黃家禮所編著的"幾明".
a+12=24cos^2(B/2),a+12=24cos^2A=12(1+cos2A)
a=12cos2A,B=2A,C=2B=4A,A=pi-6A,A=pi/7
CF=[2ab/(a+b)]cos(B/2)...陳一理所編著的"三角"皆有證明
=[2ab/(a+b)]cosA=[2ab/(a+b)]*[(b^2+c^2-a^2)/2bc]
=(a/c)[a(c+a)+c^2-a^2]/(a+b)
=a(c+a)/(a+b)=b^2/(a+b)
=b^3/[b(a+b)]=b^3/c^2...同理C=2B時,c^2=b(a+b).
=b(b/c)^2=(12sin2Acos2A/sinA)(sin2A/sin4A)^2
=6(sin4A/sinA)(sin2A/sin4A)^2
=6[sin^2(2A)]/(sinAsin4A)
=6sin2A/(2sinAcos2A)
=6(cosA/cos2A)...大概就是6
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.58.103.35
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1506315973.A.2A9.html
※ 編輯: wayne2011 (61.58.103.35), 09/25/2017 15:32:04
※ 編輯: wayne2011 (61.58.103.35), 09/25/2017 15:32:47
推 sunev : 最後兩行是錯的吧 09/25 17:32
→ wayne2011 : 因為寫到"和差化積",所以答案跟你講的只能算近似值. 09/25 18:19
※ 編輯: wayne2011 (61.58.103.35), 09/25/2017 20:00:00
推 LPH66 : 你一定是小算盤忘記換 rad 就按 cos 了 09/25 19:27
→ LPH66 : cos((pi/7)度) 確實是約 0.99997 09/25 19:28
→ LPH66 : cos((pi/7)rad) 是約 0.900969 09/25 19:29
※ 編輯: wayne2011 (61.58.103.35), 09/25/2017 22:00:54
→ wayne2011 : 我沒用"小算盤"~那就是網查看到的~rad是從那看來的? 09/26 00:52
→ LPH66 : 呃, rad 就是「弳度」(radian) 啊... 09/26 01:33
→ wayne2011 : pi/7不就是"弳度"嗎? 查到的難道還是180/7度?不太懂 09/26 09:53