看板 Math 關於我們 聯絡資訊
※ 引述《znmkhxrw (QQ)》之銘言: : 首先強調一下我想要討論的是n,m€natural numbers : -------------------------------------------- : 當i是正的無理數時 : 已經知道{ni+m:n,m€整數} is dense in R : 而證法有很多,之前也有跟板友討論過 : 但是 : 這些證法我只能推得{ni+m:n,m€整數} is dense in R : 並無法推得{ni-m:n,m€正整數} is dense in R : 我想知道的是,若是正整數的話,依然稠密嗎? : 若是,如何證明? : 這邊就不附上"{ni+m:n,m€整數} is dense in R"的證明了 有需要再補上 : 謝謝 讓我練習一下ow o Let E = {ni-m : n, m in N}, i in R, i not in Q, i > 0 F = {ni+m : n, m in Z} L(E) is the set of all limit point of E C(E) is the closure of E = E union L(E) Need to prove C(E) = R. (Thm) C(F) = R (proven) (Coro) L(F) = R (pf) By continued fraction of i, 0 is in L(F). then for any a in F, a = ni+m+0 is in L(F). (Prop) If r, s in L(E), then (1) r-1 in L(E) (2) r+1 in L(E) (3) kr in L(E) for any k in N (4) r+s in L(E) (pf) (1)(3)(4) is trivial. (2) Let {r_j} in E, r_j -> r. Since {r_j = ni-1: |r_j - r| < 1, n in N } is finite we can remove them. thus {r_j+1} in E and r_j+1 -> r+1 (Lemma) Given r in R, then one or two of r, -r is in L(E) (pf) Let {r_j} in F, r_j -> r. Since {r_j = ni+0: |r_j - r| < 1, n in Z} {r_j = 0i+m: |r_j - r| < 1, m in Z} {r_j = ni+m: |r_j| < 1+|r|, n, m in Z, mn > 0} are all finite set, we can remove them. Thus we have mn < 0 for all r_j Then either infinite r_j have m<0, n>0, thus those {r_j} in E and r in L(E) or infinite r_j have m>0, n<0, thus those {-r_j} in E and -r in L(E) or both. (Thm) C(E) = R (pf) By Lemma, 0 is in L(E). Thus by Prop Z is in L(E). Given M in N, M > 1, we have -1/M = -1 + (M-1)( 1/M) and 1/M = 1 + (M-1)(-1/M) Hence by lemma and prop, both 1/M and -1/M is in L(E), so does Q. Now Q in L(E) means Q in C(E) and R = C(Q) in C(C(E)) = C(E) 由於 Prop 的關係,證明中最大的問題是 1/M in L(E) 原文底下Ricci大的回覆有提示可以考慮正負的情況(?) 就是那個lemma -- 嗯嗯ow o -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.167.45.182 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1507603660.A.7A0.html 沒寫清楚...qw q 已更正 ※ 編輯: Desperato (140.112.25.105), 10/11/2017 07:49:22
znmkhxrw : 已與D大私信討論解決 謝謝D大幫忙 10/11 16:05