作者wayne2011 (今年十三號星期五)
看板Math
標題Re: [中學] 中一中資優試題(畢氏定理)
時間Mon Oct 30 10:59:50 2017
※ 引述《t0127754 (T0127754)》之銘言:
: 在ΔABC中,BC=17, CA=18, AB=19, 過ΔABC內部一點 P 向三邊分別作高D, E, F,
: 使PD⊥BC, PE⊥AC, PF⊥AB,且BD+CE+AF=27, 求BD+BF為何?
設BD=x,CE=y,AF=z
三角形PAB中
PA^2-z^2=PB^2-(18-z)^2
整理得
PA^2-PB^2=z^2-(19-z)^2...(1)
=19*(2z-19)
同理
PB^2-PC^2=x^2-(17-x)^2=17(2x-17)...(2)
PC^2-PA^2=y^2-(18-y)^2=18(2y-18)=36(y-9)...(3)
(1)+(2)+(3):
2(17x+18y+19z)=(17^2+18^2+19^2)...(4)
x+y+z=27...(5)
(5)*(6^2)-(4)
2(x-z)=6^2*3^3-(17^2+18^2+19^2)
=(2^2)*(3^5)-[(18-1)^2+18^2+(18+1)^2]
=4*243-[2*(1^2)+3*18^2]
=972-(2+324*3)=-2,x-z=-1.
原式=x-z+19=18...ans
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.58.103.35
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1509332393.A.729.html
推 JI1 : and the lord god said, it is not good that the 10/30 11:09
→ JI1 : man should be alone, i will make him a help meet 10/30 11:09
→ JI1 : for him. Genesis 2:18 10/30 11:09
→ musicbox810 : 造出夏娃? 10/30 11:31