看板 Math 關於我們 聯絡資訊
※ 引述《raymond92928 (raymond)》之銘言: : https://i.imgur.com/IDp0LyW.jpg : 主題是modular arithmetic : 找不到嚴謹的證明方法 Let n = 2^a 5^b m, m not multiple of 2 or 5 Given a set S = {1, 10, 10^2, 10^3, ..., 10^(9m-1)} |S| = m, every element x of S never a multiple of 9m Thus x = a (mod 9m), a in T = {1, 2, 3, ..., 9m-1}, |T| = 9m-1 Therefore exists x != y in S, x = y (mod 9m) Write x = 10^i, y = 10^j, we may assume i < j Then (y-x) is a multiple of 9m and 10^c (7/9) (y-x) is a multiple of n, c = max{a, b} which is the desired number. -- 嗯嗯ow o -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1512637400.A.377.html
raymond92928: 謝謝,mod 9m那個a和一開始的那個a是不同的a嗎? 12/07 20:16
Desperato : 啊對 標錯了 12/08 14:06