※ 引述《semmy214 (黃小六)》之銘言:
: http://imgur.com/a/aVGIb
: 請教版上高手大大
t = theta
9. 總之先寫基本款
n sin(nt/2)
sum cos(k t) = ----------- cos((n+1)t/2)
k=1 sin(t/2)
接下來是化簡
cos(x) cos(x-t) cos(x+t)
= cos(x) (cos^2(x) cos^2(t) - sin^2(x) sin^2(t) )
= cos(x) (cos^2(x) + cos^2(t) )
= cos^3(x) + cos^2(t)cos(x)
= (1/4)(cos(3x)+3cos(x)) + cos^2(t)cos(x)
因此
n
sum cos(k t) cos((k+1)t) cos((k+2)t)
k=1
n
= sum (1/4)(cos(3(k+1)t)+3cos((k+1)t)) + cos^2(t) cos((k+1)t)
k=1
嗯...懶的算了好麻煩R 還是不會再說吧ow o
不知道有沒有更好算的方法
10. a = alpha, b = beta
同樣先化簡
sin(x) - sin(x+2b) = -sin(b) cos(x+b)
因此
n-1
sum sin(a+2kb) sin(a+(2k+1)b) - sin(a+(2k+1)b) sin(a+2kb+2b)
k=0
n-1
= sum sin(a+(2k+1)b) (-sin(b) cos(a+2k+1)b)
k=0
n-1
= (-1/2) sin(b) sum sin(2a+(4k+2)b)
k=0
剩下也用 sin 連加來算
--
嗯嗯ow o
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1512825303.A.B97.html
※ 編輯: Desperato (140.112.25.105), 12/10/2017 14:45:04