看板 Math 關於我們 聯絡資訊
Prob: y'' + 2y' + 2y = exp(-x)/(cosx)^3 Sol: 解特徵方程式 m^2 + 2m + 2 = 0 => m = -1+i , -1-i 整理後得 y_1 = exp(-x)cosx , y_2 = exp(-x)sinx W = | y_1 y_2 | = exp(-2x) | y_1' y_2'| By variation of parameters: y'' + P(x)y' + Q(x)y = f(x)之特解有以下形式 y_2*f(x) y_1*f(x) y_p = u_1*y_1 + u_2*y_2, where u_1' = - -------- , u_2' = -------- W W 所以 u_1' = -sinx/(cosx)^3 , u_2' = 1/(cosx)^2 = (secx)^2 u_1 = -1/2*(sec)^2 , u_2 = tanx => y_p = [-1/2*(sec)^2]*exp(-x)cosx + tanx*exp(-x)sinx 1 sinx = exp(-x)[-1/2 * -------- * cosx + ---- * sinx] (cosx)^2 cosx = exp(-x)[-1/2*secx + secx*(sinx)^2] = -1/2*exp(-x)secx*cos(2x) ## -- 感覺答案少寫後面那一塊吧? -- HEY~~~HEY~~~CHAAAAARLIE~!   。。。。。 ⊙ . ▼▼▼▼ \▲▲▲▲ φ . \ . δ ./ㄨ \\/ˊ▄▄ \|/ㄑ ( ︶ ˋ\///\/. by Armour@joke -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.218.174 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1515327550.A.92C.html
hahaiduno : 請問cos(2x)怎麼整理得到的?不是-e^-x*cosx嗎? 01/07 21:10
cos(2x) = 1 - 2*(sinx)^2 只是我手癢再化簡而已 不要在意他 ※ 編輯: whalelover (140.112.218.174), 01/07/2018 21:13:22