推 hahaiduno : 請問cos(2x)怎麼整理得到的?不是-e^-x*cosx嗎? 01/07 21:10
cos(2x) = 1 - 2*(sinx)^2 只是我手癢再化簡而已 不要在意他
※ 編輯: whalelover (140.112.218.174), 01/07/2018 21:13:22
Prob: y'' + 2y' + 2y = exp(-x)/(cosx)^3
Sol:
解特徵方程式 m^2 + 2m + 2 = 0 => m = -1+i , -1-i
整理後得 y_1 = exp(-x)cosx , y_2 = exp(-x)sinx
W = | y_1 y_2 | = exp(-2x)
| y_1' y_2'|
By variation of parameters:
y'' + P(x)y' + Q(x)y = f(x)之特解有以下形式
y_2*f(x) y_1*f(x)
y_p = u_1*y_1 + u_2*y_2, where u_1' = - -------- , u_2' = --------
W W
所以 u_1' = -sinx/(cosx)^3 ,
u_2' = 1/(cosx)^2 = (secx)^2
u_1 = -1/2*(sec)^2 , u_2 = tanx
=> y_p = [-1/2*(sec)^2]*exp(-x)cosx + tanx*exp(-x)sinx
1 sinx
= exp(-x)[-1/2 * -------- * cosx + ---- * sinx]
(cosx)^2 cosx
= exp(-x)[-1/2*secx + secx*(sinx)^2]
= -1/2*exp(-x)secx*cos(2x)
##
--
感覺答案少寫後面那一塊吧?
--
◣ ◢ HEY~~~HEY~~~CHAAAAARLIE~!
。。。。。 ◢ ▁ ◣ ⊙ ⊙
⊙ .◣ ▼▼▼▼
ㄟ◥ ㄧ◤ \▲▲▲▲
φ ◢ . \ . δ
./ㄨ \\/ˊ◥▄▄◤ \|/ㄑ ( ︶ ˋ\///\/. by Armour@joke
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.218.174
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1515327550.A.92C.html