看板 Math 關於我們 聯絡資訊
※ 引述《daoziwai (daoziwai)》之銘言: : 題目是這樣的 : Suppose you need to know an equation of the tangent plane to a surface S at th : e : r1(t)= (2+3t, 1-t^2, 3- 4t+t^3) : r2(u)=(1+u^2 , 2u^3-1 , 2u+1) : both lie on S. Find an equation of the tangent plane at P. : 我只知道方程式會長成 : z=3+fx(x-2)+fy(y-1) : 但是我不知道要怎麼從那兩個向量函數求出fx(x,y)跟fy(x,y) : 老師連向量函數都沒介紹過...請求各位能夠深入淺出的讓我理解 : 感謝... 題目看不懂把他拿去google才知道你漏貼了 Suppose you need to know an equation of the tangent plane to a surface S at the point P (2,1,3). ou don't have an equation for S but you know that the curves: r_1(t)= (2+3t, 1-t^2, 3- 4t+t^3) r_2(u)=(1+u^2 , 2u^3-1 , 2u+1) both lie on S. Find an equation of the tangent plane at P. <sol> idea:曲面S上的任一點P的切平面即是通過該點P的曲線的切線向量所形成的集合 即 T_P(S) := {α'(t)│α:[a,b]→S with α(t)=P} 經由計算 r_1'(t) = (3,-2t,4+3t^2), r_1'(0) = (3,0,4) and r_1(0) = P r_2'(u) = (2u,6u^2,2), r_2'(1)=(2,6,2) and r_2(1) = P 因此T_P(S) = span{(3,0,4),(2,6,2)} 對了,以上是幾何定義切平面的方式(通過原點),如果要通過P點,那答案就是P+T_P(S) 最後如果答案要求寫成ax+by+cz=d的形式,就...高中數學^^" -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 219.68.160.241 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1523202232.A.29F.html
daoziwai : 感謝!我再慢慢看 04/09 19:41