※ 引述《daoziwai (daoziwai)》之銘言:
: 我看到一個題目但是不能理解
: Show that the problem of finding the minimum value of f(x,y)=x^2+y^2 subject to the constraint xy=1 can be solved using Lagrange multipliers, but f does not have a maximum with that constraint.
: 請問這和x=1/y 有什麼關係?
LAGRANGE: F=x^2+y^2+LUMBDA(xy-1)
partial f/partial x=0=2x+Lumbda
partial f/partial y=0=2y+lumbda
partial f/partial lumbda=xy-1
solve eqations x=y 是極值點或鞍點
因f=x^2+y^2>=0 有下界 故有最大下界(least upper bound)故有極小值
且x=infinity或y=infinityf無限大 故極大值為無限大
由least upper bound (least lower bound)property,這個極小值必然存在,
存在的話因lagrange 是necessary condition,故x=y必是極小值
另解:算幾不等式,分x>0,y>0和x<0,y<0討論。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.33.26.34
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1523508854.A.DDF.html