作者Desperato (Farewell)
看板Math
標題Re: [代數] 多元方程式因式分解
時間Sun Apr 29 20:30:41 2018
※ 引述《Ben40 (來自巴哈的魚酥)》之銘言:
: https://i.imgur.com/81uw4DD.jpg
: 想要請教一下這類方程式因式分解有沒有一定方式可以依循
: 另外還有怎麼確定該多項式是不可再分解的
我不知道是不是有跡可循,總之就做吧ow o
(a) consider a = x, b = 2y, c = 3
then by the formula a^3 + b^3 + c^3 - 3abc we have
x^3 + 8y^3 - 18xy + 27
= (x + 2y + 3) (x^2 + 4y^2 + 9 - 2xy - 3x - 6y)
the latter term is
x^2 - (2y+3)x + (4y^2-6y+9) in R[x], where R=Z[y]
if it is reducible, then it can factorize into (x - p(y))(x - q(y))
thus p(y)q(y) = 4y^2-6y+9 and p(y) + q(y) = 2y+3, which has no solution
(b) x^3 + 3x^2y - 2y^3
consider t^3 + 3t^2 - 2 = (t+1)(t^2+2t-2), we have
x^3 + 3x^2y - 2y^3
= (x + y)(x^2 + 2xy - 2y^2)
a similar method can prove that the latter term is irreducible
(c) x^2 - 3xy^2 + 2y^2
irreducible by similar method
(d) x^2 - 2zx - xy - 2yz
= x^2 - (2z+y)x - 2yz in T[x], where T = Z[y, z]
irreducible by similar method
(e) x^3 + 2(y-z)x^2 + (x-z)y^2 + (x+y)z^2 - 3xyz
= x^3 + 2(y-z)x^2 + (y^2 -3yz + z^2)x - yz(y-z) in T[x]
if it is reducible, then it must has a factor out of
x +- y, x +- z, x +- (y-z), x +- yz, ... etc.
try x = y gives nonzero polynomial
try x = -y gives 0, thus x + y is a factor
continue we have
= (x + y)(x - z)(x + y - z)
reference: wolframalpha :D
--
嗯嗯ow o
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.4
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1525005044.A.002.html
推 LiamIssac : 這種題目沒辦法 就是看自己對於這些polys的敏感度 04/29 20:44
→ LiamIssac : 只能兜兜湊湊土法煉鋼 04/29 20:44
→ Desperato : 了解 感謝 04/29 22:30
→ recorriendo : 所以similar method就是wolframalpha? XD 04/30 00:12
推 Ben40 : 非常感謝 我會再多練習點 04/30 05:24
→ Desperato : 不是啦www 是跟(a)一樣 假設可以拆 然後矛盾 基本 04/30 11:47
→ Desperato : 只有二次式可以這樣用 04/30 11:47