作者cyt147 (大叔)
看板Math
標題[分析] discontinuities of a B.V. function
時間Sat May 26 17:38:16 2018
大家好,有個問題想請教各位。我目前正試著證下列性質:
Let f:[a,b]→R be of bounded variation. If f has a discontinuity, it must be
a simple jump. Furthermore, the discontinuities of f form a countable set.
NOTE: A simple jump has limits on both sides if it's an interior point, and
has the one-sided limit if it's an endpoint.
============================================================================
我已經知道:
1. A function of bounded variation can be expressed as the difference of two
increasing functions.
2. An increasing functions can have a discontinuity only when it's a simple
jump. Besides, the set of discontinuities is countable.
我查了幾本分析導論,都是用上面兩個lemma"說明",沒有詳細過程。如果想寫個一清
二楚,請問該怎麼下手?謝謝。
我的開頭目前就只有:
Suppose f=g-h for some increasing functions g,h.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 180.177.114.46
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1527327499.A.601.html
推 LiamIssac : 我的想法是把bv根據那些不連續點分別拆成兩段的合 05/26 17:41
謝謝回應。
後來想想,似乎沒什麼好證的。由極限的減法可知g-h在不連續點會有左、右極限,所以
f的不連續點必為simple jump。另一方面,在用g、h製作g-h的時候,不論他們的不連續
點是否減少,終究各自成一個countable set,取聯集當然還是countable set。我覺得這
個證明寫仔細的話大概就是這樣。
※ 編輯: cyt147 (180.177.114.46), 05/26/2018 18:13:32
※ 編輯: cyt147 (180.177.114.46), 05/26/2018 18:15:57
→ mike50378 : 這是Apostol 的高微,可以找到證明,概念跟你理解 05/26 18:43
→ mike50378 : 的一樣 05/26 18:43
推 lwei781 : g 和 h 連續的點 f 也連續 07/12 06:51