作者onechen (一元復始)
看板Math
標題Re: [機率] 換還是不換問題請教
時間Sun Jun 24 21:28:11 2018
先謝謝tyz大大的回覆
恩抱歉我想了一下沒有很理解你的意思
恩題目第二行就已經說明, 一張支票的價值是另外一張的兩倍
所以總共就是兩個數字,我這邊用50跟100,要用a跟2a也可以
重點是我把這兩個值裡面比較小的值叫做a了,所以不會有(1/2)a的情況了
所以 假設抽到的叫x, 是一個隨機變數, 並不是一個定值
x = a (1/2機率), x = 2a (1/2機率)
要換的結果叫y
y = 2x (x=a時), y = (1/2)x (x=2a時)
也就是當主持人跟你說,換的話有可能是(1/2)x或是2x 的時候
這邊的x一定是要不一樣的值,互斥的,才會分別有(1/2)x跟2x
如果把x當成一個定值,算出y期望值 = (5/4)x 就是原解答
但實際上我認為y期望值是
(1/2)*(2a) + (1/2)*(1/2)*(2a) = 1.5a
跟抽第一次,x的期望值 = 1.5a 相同,換不換沒差
我也再重複一次直觀一點的想法
遊戲規則是 已知一張支票的價值是另外一張的兩倍,單純二選一
如果玩這遊戲的策略變成,
任選一張,然後主持人問說要不要換啊 => 一定換
會顯得不合理
一開始選到大的是1/2,一定換也是1/2
謝謝
※ 引述《tyz (秋星夜雨)》之銘言:
: ※ 引述《onechen (一元復始)》之銘言:
: : 自問自答一下,我覺得我大概搞懂了,以下是個人結論
: : 我覺得原解答不符合題目的意思,我上一篇的想法應該是對的
: : 那原解答的問題在哪?我認為原本解答只有在另外一種狀況才適用
: : 用數字說明比較清楚,假設我們就直接設定獎金是50跟100塊
: : 原本解答適用的情況是
: : 當你抽到其中一種,比如說50塊,主持人跟你說,1/2的機率是100塊,1/2的機率是25塊
: : 這時候解答的算法才適用,期望值就是要換
: : (抽到100塊,主持人說,1/2機率是200塊,1/2機率是50塊)
: 沒錯 這就是題目的意思
: : 但根據題目,情境不是這樣的,總共就是50跟100塊
: : 如果抽了50塊,就不可能出現25塊,另外一個一定是100
: : 抽了100塊,另外一個一定是50
: 這想法不符合題目的意思
: 因為當你看到50元的時候 "你並不知道"兩張支票是 25元&50元 還是50元&100元
: 因為"你並不知道" 所以才有後續的問題產生 也才是這遊戲迷人所在
: 如果你事先知道是50元&100元
: 那當你看到50元時 你會考慮是否要換?
: 那當你看到100元時 你會考慮是否要換?
: 那怎麼會產生樂趣呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.160.122.203
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1529846894.A.BCD.html
推 tyz : 這遊戲你並不知道你抽到的是大的還小的呀~ 06/24 22:22
→ tyz : 也就是你看到50元 但你並不知道是25&50 還是50&100 06/24 22:25
推 tyz : 我重看了你兩篇的想法 你說的是抽之前來算期望值 06/24 22:33
→ tyz : 而題目說的是在你抽出一個之後 來算期望值 06/24 22:35
→ tyz : 所以你說"x是隨機變數 並非定值" 是錯誤的 他是定值 06/24 22:36
→ tyz : 因為你已經抽了 你已知x是什麼了 他沒有變化的可能 06/24 22:37
→ tyz : 舉例來說 你抽出來發現是1萬 你換還不換? 06/24 22:39
→ onechen : 非常感謝tyz大大的回應,我覺得你點出了我的盲點 06/25 11:45
→ onechen : 我的想法會是在上帝視角下,所有的值都決定好了 06/25 11:45
→ onechen : 但是我們就是因為不知道,抽了一張還沒看之前 06/25 11:46
→ onechen : 有無窮多種可能,開了一張看到x後,會限縮到只有 06/25 11:47
→ onechen : 兩種可能,這時候來思考比較有利的狀況,這題 06/25 11:48
→ onechen : 讓我思考了很久,非常感謝tyz大大指點 06/25 11:49
→ onechen : 補充recorriendo大大提供,Two envelopes problem 06/25 14:54
→ onechen : 是關鍵字,簡單講結論,這題如果抽了還沒看獎金多少 06/25 14:55
→ onechen : 換不換沒差,如果抽了看到獎金了,換比較好 06/25 14:56