看板 Math 關於我們 聯絡資訊
※ 引述《Desperato (Farewell)》之銘言: : https://goo.gl/xhxzHn : 其實網路上有答案ow o : 不過這是我硬幹 4 小時卻完全做不出來之後了,只好抄答案了qw q : 令 D = d/dx = D, y = x^2-1 : 關鍵是要把遞迴式中的 x 塞進微分裡面 : (Lemma) Let f = f(x) be smooth. : Then D^n (x f) = x D^n f + n D^(n-1) f : Hence x D^n f = D^n (x f) - n D^(n-1) f : (pf) Using general Leibniz rule. : p.s. 原文是使用 commutator, [D, x] = 1 and [D^n, x] = n D^(n-1) : 所以就有 x D^n f = D^n (x f) - n D^(n-1) f : 原式 (n+1) P_(n+1) = (2n+1) x P_n - n P_(n-1) : 整式同乘 1/(2^(n+1) n!) 可得 : D^(n+1) y^(n+1) = 2(2n+1) x D^n y^n - 4 n^2 D^(n-1) y^(n-1) : 注意到中間那項 x D^n y^n = D^n (x y^n) - n D^(n-1) y^n : 因此可以計算 : LHS - RHS : = D^(n-1) [ D^2 y^(n+1) - 2(2n+1)D(x y^n) + 2(2n+1)n y^n + 4n^2 y^(n-1)] : = D^(n-1) [ 2(n+1) y^n + 4n(n+1)x^2 y^(n-1) : - 2(2n+1)y^n - 4n(2n+1)x^2 y^(n-1) + 2n(2n+1)y^n + 4n^2 y^(n-1)] : = D^(n-1) { y^(n-1) [ 2(n+1)y - 4n^2 x^2 - 2(2n+1)y + 2n(2n+1)y + 4n^2 ] } : = D^(n-1) { y^(n-1) [ 0 ] } = 0 : 從上面計算可以看出,想直接從 LHS 推到 RHS 會非常有技術性... : 至少我是寫不出來啦(攤手) It's not that difficult. Derived directly from Rodrigue's formula, P_n(x) = Σ_{0}^{n} (-1)^k C(2n-2k,n)C(n,k) x^{n-2k} /2^n = Σ_{-∞}^{∞} (-1)^k C(2n-2k,n)C(n,k) x^{n-2k} /2^n (where 1/(-m)! is taken to be 1/Γ(1-m)=0 for natural number m and Γ(y+1)=yΓ(y) for all real number y this can be realized by a simple ε-trick) = Σ (-1)^k C(2n-2k,n)C(n,k) x^{n-2k} /2^n (the domain of summation is omitted for simplicity) We wish to express (n+1)P_{n+1}(x) by a linear combination of lower degree Legendre polynomials, and the coefficient ring is supposed to be R[x]. WLOG, we assume that there is a P_n term carrying out the x^{n+1} term. Since (n+1)C(2n+2,n+1)/2^{n+1} / [C(2n,n)/2^n] = 2n+1, the P_n term is (2n+1)xP_n. (the "x" with no constant term is chosen to stick with parity) The rest of the calculation is shown below, (n+1)P_{n+1}(x) - (2n+1)xP_n(x) = Σ (-1)^k x^{n+1-2k}/2^{n+1} * [ (n+1)C(2n+2-2k,n+1)C(n+1,k) - 2(2n+1)C(2n-2k,n)C(n,k) ] = Σ (-1)^k x^{n+1-2k}/2^{n+1} * C(2n-2k,n)C(n,k) * [ (n+1)(2n+2-2k)(2n+1-2k)/[(n+1-2k)(n+1-k)] - 2(2n+1) ] = Σ (-1)^k x^{n+1-2k}/2^n * C(2n-2k,n)C(n,k) * [ (n+1)(2n+1-2k)/(n+1-2k) - (2n+1) ] = Σ (-1)^k x^{n+1-2k}/2^n * C(2n-2k,n-2k)C(n,k) * [ 2nk/(n+1-2k) ] = nΣ (-1)^k x^{n+1-2k}/2^{n-1} * C(2n-2k,n)nC(n-1,k-1) / (n+1-2k) = nΣ (-1)^k x^{n+1-2k}/2^{n-1} * C(2n-2k,n-1)C(n-1,k-1) = nΣ (-1)^{K+1} x^{n-1-2K}/2^{n-1} * C(2n-2K-2,n-1)C(n-1,K) (where k=K+1) = -nP_{n-1}(x) Just play with factorials! -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.243.92.106 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1543077935.A.7F1.html ※ 編輯: Vulpix (111.243.92.106), 11/25/2018 00:53:55
Lanjaja : 謝謝V大 可以再解釋一下due to parity這段嗎? 11/25 02:24
In fact, we may have recurrence relation with some extra terms, but we can still reduce the coefficients to a decent form. Let (n+1)P_{n+1}(x) = Σ_{k<n+1} f_k(x)P_k(x). Since P_{n+1}(-x) = (-1)^{n+1} P_{n+1}(x), we have (n+1)P_{n+1}(x) = (-1)^{n+1}Σ_{k<n+1} (-1)^k f_k(-x)P_k(x), and (n+1)P_{n+1}(x) = Σ_{k<n+1} [ f_k(x) + (-1)^{n+k+1} f_k(-x) ]/2 P_k(x). The coefficient [f_k(x) + (-1)^{n+k+1} f_k(-x)]/2 has a certain parity.
Desperato : 先推 原來gamma倒數為0可以解釋這個 11/25 09:32
Just for the sake of convenience, for I don't want to waste time checking the constant term, etc. ※ 編輯: Vulpix (111.243.92.106), 11/25/2018 19:41:42