看板 Math 關於我們 聯絡資訊
給定 0<a,a',b,b'<1, a+a'<=1, b+b'<=1 b<a, 1/2<a', 0<m<n, m,n為自然數 (1) b^n*b'^m < a^m*a'^n (2) b*b' <= a*a' (Thm1) (1) iff (2) (pf) Note that b/a' < 1 "=>" if b/a' > a/b', then b/a' => (a/b')^r for some r=m/n close to 1 thus (b/a')^n => (a/b')^m "<=" (b/a')^n < (b/a')^m <= (a/b')^m (Thm2) (2) does not hold (pf) a=0.25, a'=0.6, b=0.2, b'=0.8 is a counterexample Therefore (1) fails. one can use Thm1 to obtain a counterexample for (1) p.s. if a+a'=b+b', then (2) holds p.s. if no 1/2<a', then b/a' may => 1 which make (1) fails when m, n is big ---- Sent from BePTT -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 180.204.65.139 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1558633606.A.94B.html
erre : so? 05/24 18:48
Desperato : 我證錯了XD 看隔壁 05/24 20:26