看板 Math 關於我們 聯絡資訊
為何1.)取出1、2、3顆紅球機率與2.)和3.)取出1、2、3顆紅球機率不同,但三種取球方式最後所得的紅球個數期望值皆相同? 題目如下: 袋中有3顆紅球,5顆綠球,每球被取的機會均等。X為取得紅球個數,P為機率,E為期望值 1.)取球三次,每次一球,取後放回,求取得紅球個數的期望值。 P(X=0)=75/512 P(X=1)=225/512 P(X=2)=135/512 P(X=3)=27/512 E(X)=[1*(225/512)]+[2*(135/512)]+[3*(27/512)]=576/512=9/8 2.)取球三次,每次一球,取後不放回,求取得紅球個數的期望值。 P(X=0)=5/28 P(X=1)=15/28 P(X=2)=15/56 P(X=3)=1/56 E(X)=[1*(15/28)]+[2*(15/56)]+[3*(1/56)]=63/56=9/8 3.)一次取出三球,求取得紅球個數的期望值。 P(X=0)=5/28 P(X=1)=15/28 P(X=2)=15/56 P(X=3)=1/56 E(X)=[1*(15/28)]+[2*(15/56)]+[3*(1/56)]=63/56=9/8 ----- Sent from JPTT on my iPhone -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 172.114.23.5 (美國) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1583544404.A.A25.html
Ricestone : 2跟3是同一件事的期望值,而1跟2是剛好而已 03/07 09:39
Ricestone : 這個剛好指的是取後有沒有放回的期望值一樣 03/07 09:40
Ricestone : 但是實驗再複雜一點就會有不同了,所以當作剛好就好 03/07 09:41
Ricestone : 啊如果你就是想問1跟2為什麼算出來會一樣,那就是 03/07 09:52
所以是說1跟2的機率是真的不一樣?還是跟抽籤原理有關,其實1跟2的機率應該一樣?
Ricestone : 直接用符號寫算式出來而已 03/07 09:53
※ 編輯: gnorimim (172.114.23.5 美國), 03/07/2020 10:41:33
Ricestone : 機率當然是真的不一樣 03/07 10:47
yhliu : 1) 和 2) 期望值相同並非巧合. 03/07 17:51
yhliu : 令 Zi 為第 i 次取球結果, X=Z1+Z2+Z3. 03/07 17:53
yhliu : 在 1) Z1,Z2,Z3 相互獨立, 在 2), 它們不獨立. 03/07 17:55
yhliu : E[X] = E[Z1]+E[Z2]+E[Z3], 因兩種情形 Z1,Z2,Z3 的 03/07 17:56
yhliu : 個別機率是相同的, 所以期望值相同. 03/07 17:57
yhliu : 都是 P[Zi=1] = 3/8 = 1-P[Zi=0] 03/07 17:58
Ricestone : 原來如此,那的確可以由抽籤原理解釋了 03/08 03:15
Ricestone : 不過我的巧合主要還是指這樣一個獨立和不獨立的實驗 03/08 03:16
Ricestone : 有一個期望值相同的結果,現在看來該說是指抽籤原理 03/08 03:17
Ricestone : 本身 抽籤原理本身算是有更深的數學意含嗎? 03/08 03:18
chemmachine : https://reurl.cc/NjaOR5 03/08 03:30
chemmachine : 這兒有類似的。期望值不管如何抽都是紅球機率*3,符 03/08 03:32
chemmachine : 合直覺。 03/08 03:32
chemmachine : 推yh大 03/08 03:32
chemmachine : 3/8 *3=9/8 03/08 03:33
yhliu : 1) 就是所謂 "獨立 Bernoulli 試驗" 的例子; 03/08 07:50
yhliu : 2) 是有限二項群體抽樣的例子. 03/08 07:51
yhliu : 1) 的 X 的分布是二項分布, 2) 是超幾何分布. 03/08 07:52
yhliu : 兩者差在 Zi 的聯合機率分布不同. 計算期望值時只跟 03/08 07:54
yhliu : 個別 Zi 的分布有關, 計算標準差或變異數則和諸 Zi 03/08 07:56
yhliu : 兩兩的共變異數或相關係數有關; 至於 X 的分布則和 03/08 07:58
yhliu : 諸 Zi 完整的聯合機率分布有關. 03/08 07:59
yhliu : 所以如果只要看其望值, 三種抽樣(抽球)架構得到的 03/08 08:01
yhliu : E[X] 是一樣的. 2) 和 3) 的差異則在於要不要區別 03/08 08:03
yhliu : 諸 Zi? X=Z1+Z2+Z3 對諸 Zi 同樣對待, 所以 2), 3) 03/08 08:04
yhliu : 的 X 有相同機率分布. 03/08 08:05