看板 Math 關於我們 聯絡資訊
想問一下 哪邊有legendre function和他的associated 的形式的正交證明? 正交的係數我一直不知道該怎麼導 麻煩各位大哥告訴我 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 117.19.128.14 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1589383968.A.A3B.html
cuylerLin : 假設n,m相異,把P_n和P_m代入Legendre微分方程式裡 05/13 23:44
cuylerLin : P_n那一式乘上P_m,P_m那一式乘上P_n,兩式相減 05/13 23:45
cuylerLin : 整理成一大個d/dx(...)的形式,兩邊對x從-1到1積分 05/13 23:46
cuylerLin : 積完之後因為n,m相異,就會跳出你要的正交性結果了 05/13 23:47
cuylerLin : 這個證明想法跟Bessel函數正交證法差不多,不過 05/13 23:49
cuylerLin : Bessel比較煩就是了,性質太多分三類外還各有修正型 05/13 23:49
Vulpix : 如果你想要的東西是歸一化係數,一個常用的作法是 05/14 01:18
Vulpix : 把生成函數平方再積分。 05/14 01:18
KomiShousuke: 如果是legendre polynomials的話, 05/14 16:13
KomiShousuke: 從它的generating function 去做就知道係數了 05/14 16:14
KomiShousuke: generating function 積出來是(1/s)ln[(1+s)/(1-s)] 05/14 16:15
KomiShousuke: 弄成無窮級數就是summation 2/(2n+1)*s^{2n} 05/14 16:17
KomiShousuke: 兩邊一比就洨都知道了 05/14 16:17
KomiShousuke: 講錯,是積generating function 的平方的拉~ 05/14 16:19