看板 Math 關於我們 聯絡資訊
引述《ethan0221 (Ethan)》之銘言: : Derive the distribution (pdf) of the r-th power y of a normally distributed : random variable x, that is, y=x^r, x ~ N(μ, σ2). Assume r > 0. What happens : if r = 0 or r < 0? What is E(1/x) if x is normal? Then find the mean of x^r : using the approximation by the delta method. What is required for the delta : method approximation to be valid? 分幾個問題: (1) r > 0 時 (2) r ≦ 0 (3) E[1/X] (4) Delta method (1) r > 0 時 首先, x^r 必須能定義狂所有 x in R, 至少是 almost everywhere. 因此, r 必須是整數, 或特定的有理數, 如 k/3, k/5 之類的, 其中 k 是整數. 一般地說, 如果 r 不是整數, 而其最簡分數 q/p 之分母 p 是奇數, 則 x^r 除了 r < 0 時在 x = 0 無定義之外, 都有定義. h(x) = x^r, x in R 有可能是偶函數也有可能是奇函數. 當 r 以整數或最簡分數表現, 其分子是偶數時, 則 h(x) 是偶函數; 當 r 是奇整數或其最簡分數的分子是奇數時, 則 h(x) 是奇函數. 限制 r > 0 時, h(x) 在 x ≧ 0 部分是嚴格遞增的, 因此, 如果它 是奇函數, 則它在整個定義域 (R) 上是嚴格遞增的, 所以是一對一. 同果 h(x) 是偶函數, 把 R 分 x≧0 和 x<0 兩部分, 則它在這兩部 分分別是一對一的. X^r 之機率分配推導, 最基本的有分配函數法和 Jacobian 法. (a) h(x) 是奇函數時, 設 t ≧ 0, 則 P[X^r ≦ t] = P[X ≦ t^(1/r)] = ∫_(-∞,t^(1/r)] f(x) dx 其中 f(x) 是 X 的 p.d.f. t < 0 則 P[X^r ≦ t] = P[(-X)^r ≧ (-t)] = P[-X ≧ (-t)^(1/r)] = P[X ≦ -(-t)^(1/r)] = ∫_(-∞,-(-t)^(1/r)] f(x) dx Jacobian 法是針對 p.d.f. 直接變換: h 的反函數是 h^(-1)(y) = y^(1/r) if y ≧ 0, = -(-y)^(1/r) if y < 0. 故其 Jacobian, 在 1 variable 即導數, 是 J(y) = (h^(-1))'(y) = (1/r)|y|^(1/r -1) 所以, X^r 的 p.d.f. 是 g(t) = f(h^(-1)(t))|J(t)| = {(1/r)t^(1/r-1)/[√(2π)σ]}exp{-(t^(1/r)-μ)^2/(2σ^2)} if t ≧ 0; = {(1/r)(-t)^(1/r-1)/[√(2π)σ]}exp{-[-(-t)^(1/r)-μ]^2/(2σ^2)} if t < 0. 事實上 h(x) 為奇函數時, 依前面所述可知 1/r = p/q, q 是奇數, 因此 h 的反函數可直接寫 h^(-1)(t) = t^(1/r), 且此也是奇函數, 其導函數是偶函數 (除了 0 以外). 故 P[X^r ≦ t] = P[X ≦ t^(1/r)] = ∫_(-∞,t^(1/r) f(x) dx, 其 p.d.f. 也可簡單寫 g(t) = {(1/r)|t|^(1/r-1)/[√(2π)σ]}exp{-(t^(1/r)-μ)^2/(2σ^2)} all t in R-{0}. (b) h(x) = x^r 為偶函數時, h(x) ≧ 0, 也就是說 X^r 非負. P[X^r ≦ t] = P[-t^(1/r) ≦ X ≦ t^(1/r)] = ∫_[-t,t] f(x) dx, when t ≧ 0, = 0 when t < 0. h 的局部反函數是 h^(-1)(t) = t^(1/r) if t = h(x), x ≧ 0; = -t^(1/r) if t = h(x), x < 0. 所以兩部分 Jacobian 的絕對值形式都是 (1/r)t^(1/r-1). 故 X^r 之 p.d.f. 為 (1/r)t^(1/r-1)f(t^(1/r)) + (1/r)t^(1/r-1)f(-t^(1/r)) = {(1/r)t^(1/r-1)/[√(2π)σ]} × ([exp{-(t^(1/r)-μ)^2/(2σ^2)}+exp{-(t^(1/r)+μ)^2/(2σ^2)}) (2) r ≦ 0. 當 r = 0 時, h(x) = 1 for all x≠0, 所以, 除非 X = 0 with probability 則 X^r 限入定義困境, 否則 P[X^0 = 1] = 1. 當 r < 0 時, h(x) = x^r 在 x≠0 只要 x^(-r) 有定義則 h(x) 有 定義, 事實上 h(x) = 1/x^(-r). 這表示: (i) r 必須是負整數或最簡分數為 -q/p, 其中 p 為奇數. (ii) h(x) (除 x=0 之外) 可能是偶函數或奇函數. (iii) 在 x > 0 時, h(x) 是嚴格遞減的. x → +∞ 時 h(x)→0. 當 x → 0+ 時 h(x) → +∞. 至於 x < 0 的圖形特性, 根據 h(x) 是奇或偶, 及 h(x) 在 x > 0 之表現. 易知. 欽求 X^r 之機率分配, Jacobian 法變換 p.d.f. 是比較簡單的. 當 h(x) 是奇函數時, 它是一對一的, 其反函數是 h^(-1)(t) = t^(1/r), t≠0 Jacobian 為 (1/r)t^(1/r-1), 故 X^r 之 p.d.f. 為 g(t) = {(-1/r)|t|^(1/r-1)/[√(2π)σ]}exp{-(t^(1/r)-μ)^2/(2σ^2)} all t in R-{0}. 當 h(x) 是偶函數時, 仍是分 x≧0 與 x<0 兩部分轉換、加總. (3) E[1/X] = ∫_(-∞,∞) (1/x) f(x) dx = ∫_(-∞,∞) t g(t) dt. 從 X 之 p.d.f. f(x) 來看, 在 0 附近 f(x) 接近正數 {1/[√(2π)σ]} e^{-μ^2/(2σ^2)} 但 1/x 在 0 附近的積分發散, 或說不存在. 當然也可先得到 1/X = X^(-1) 的 p.d.f. g(t) = {1/[√(2π)σt^2] e^{-(1/t -μ)^2/(2σ^2)} 而後討論 ∫_(-∞,∞) t g(t) dt 的歈散問題. 對此積分式, 我們 可以發現當 t → ±∞ 時, (g(t) 的) 指數部分趨近於一個正常數 e^{-μ^2/(2σ^2)}, 但 ∫_[M,+∞) t/t^2 dt 是發散的, 因此 ∫_(-∞,∞) t g(t) dt 是發散的. 也就是說 E[1/X] 不存在. (4) Delta method 是一種近似法, 通常是用在所謂 "大樣本理論". 簡言之, 依中央極限定理知在適當條件下 Y_n = (X_1+...+X_n)/n asym. d. as N(μ,σ^2/n) for large n. 考慮一可徹分一對一變換: W_n = h(Y_n), 則 W_n asymptotically distributed as N(h(μ), (h'(μ))^2 σ^2/n) 在省略掉樣本數 n 及 "大樣本" 論述, 可以說: 在 (X 的機率分配) N(μ,σ^2) 中, 若 σ << |μ|, h(x) 是一可微分一對一變換, 則可以用 N(h(μ),(h'(μ))^2 σ^2) 近似 h(X) 的機率分配. 這是因為: 在 μ 鄰近, h(X) ≒ h(μ) + h'(μ)(X-μ) 依此, X^r ≒ μ^r + nμ^(r-1) (X-μ) 所以 E[X^r] ≒ μ^r = (E[X])^r 但由 E[X^r] = E[(X^(r/2))^2] > (E[X^(r/2)])^2, 反過來說 (E[X^r])^2 < E[X^(2r)] 可知實際上除了 r = 1 以外, E[X^r] ≠ (E[X])^r. 回顧 delta method 的條件, 最基本的需要 σ << μ. 這個條件是 很模糊的. 事實上, 若 h 可二次微分, 由二階 Taylor's expansion, h(X) = h(μ) + h'(μ)(X-μ) + 0.5 h"(ζ(X))(X-μ)^2 for some ζ(X) between μ and X. 此處 ζ(X) 的 "for some" 是指 "存在" 這麼一點介於 μ 和 X 之 間, 但並不確知在哪裡. 所以 delta method 採用一階近似, 除非 h"(ζ)(X-μ)^2 保證夠小, 否則計算結果可能沒什麼參考價值. 以 h(x) = x^r 來說, 就是 r(r-1)(ζ(X))^(r-2)(X-μ)^2 保證夠小. 那麼, 我們需要的就是 r(r-1)X^(r-2)(X-μ)^2 , r(r-1)μ^(r-2)(X-μ)^2 都保證夠小. 理論上是不可能的, 因為常態分配在整個 R 上都未消失, 我們只能期望止列二階項 "幾乎" 都很小. 如果對 Taylor's 二階展式的 (X-μ)^2 項取期望值, 則易知至少 r(r-1)μ^(r-2)σ^2 = r(r-1)μ^r(σ/μ)^2 要夠小. 這也是前面說至少 σ << μ 的理由之一. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.165.122.98 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1599536022.A.121.html
hwanger : 推一般情況的分析 09/08 12:57