看板 Math 關於我們 聯絡資訊
請問各位,底下這道題該如何解答, https://imgur.com/NyhPGAg 想了老半天,沒什麼想法。 麻煩各位大神了! 謝謝!! -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.252.176.41 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1625150449.A.C10.html
inch01742 : [n+1]p,左邊是高斯符號 07/01 22:47
inch01742 : 我的p跑出去了,[(n+1)p] 07/01 22:48
LPH66 : 把機率寫出來, 然後考慮它什麼時候變大什麼時候變小 07/01 22:49
bpall : 您好!先謝謝您的回覆,但我想了解為什麼是這樣做? 07/01 22:49
inch01742 : 其實就像上面大大說的,P(X=k)/P(X=k+1)>=1,經過不 07/01 22:53
inch01742 : 太麻煩的計算就可以得到公式了 07/01 22:53
bpall : 先謝謝兩位大大,我再試看看 謝謝! 07/01 22:56
eikcaj102 : 1.P(X=k)>=P(X=k+1)用二項分布定寫開 07/02 18:46
eikcaj102 : 得到 k>=(n+1)p-1 07/02 18:48
eikcaj102 : 2.P(X=k)>=P(X=k-1) 得到 k<=(n+1)p 07/02 18:50
eikcaj102 : 根據1和2, (n+1)p-1<=k<=(n+1)k,k是整數 07/02 18:53
eikcaj102 : 結論: 07/02 18:54
eikcaj102 : 當(n+1)p不屬於Z時 k=[(n+1)p] 07/02 18:55
eikcaj102 : 當(n+1)p屬於Z時 k=(n+1)p或 (n+1)p-1 07/02 18:57