看板 Math 關於我們 聯絡資訊
※ 引述《renine14 ()》之銘言: : 想請問下面當lambda不等於1時怎麼推導出下面的通解呢? : https://i.imgur.com/cQbR1nj.jpg : https://i.imgur.com/7ORDXPd.jpg n/q萬一是分數怎麼辦? 你一定是有些條件背景沒有寫清楚 T(n) = pT(n/q) + cn^d ,λ = (q^d)/p,T(0) = α = (p^m)T(n/(q^m)) + c(n^d)[λ/(1-λ)][(1/λ)^m - 1] 當λ =/= 1 (p^m)T(n/(q^m)) + c(n^d)m 當λ = 1 若n = q^k 則到k = (log_q)n時就可終止了 當λ = 1 有T(n) = (p^k)α + c(n^d)k = αn^d + c(n^d)(log_q)n ~ O(n^d * log_q n) 當λ =/= 1 T(q^k) = pT(q^(k-1)) + c(q^k)^d,令Q(k) = T(q^k) => Q(k) = pQ(k-1) + c(pλ)^k,Q(0) = α => Q(k) = T(q^k) = αp^k + c[λ/(1-λ)][(pλ)^k - p^k] => T(n) = αn^((log_q)p) + c[λ/(1-λ)][n^d - n^((log_q)p)] ~ O(n^d) 當d > (log_q)p ~ O(n^((log_q)p)) 當d < (log_q)p -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.24.154.165 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1636480384.A.23B.html
Honor1984 : 第一航算式T(1) = α,筆誤 11/10 02:12
Honor1984 : 當d = (log_q)p ,顯然T(n) ~ O(n^d) 11/10 02:56