看板 Math 關於我們 聯絡資訊
我想分享關於ode的variation of parameters中 不需要預先猜測把原本線性組合的常數換成函數 也能推導出相同結果的想法: 考慮一階ode形如: x'(t) = A(t)x(t)+b(t), 其中x, b為n維向量,A為nxn矩陣 唯一的變數為t (Case i) 如果A(t)是常數,即A(t)≡A for some nxn matrix A. 那我們可以模仿解純量一階ode的想法: x'(t)+a(t)x(t)=b(t) ∫a(t)dt 兩邊同乘積分因子: I(t)=e 原方程式變為: (I(t)x(t))'=I(t)b(t) 然後積分後除上I(t)就是答案 向量版本也一樣: x'(t)-Ax(t) = b(t) -At -At -At 同乘 I(t) = e => (e x(t))' = e b(t) At -At => x(t) = e ∫e b(t) dt 這個長得跟variation of parameters的公式是一樣的 那麼... A(t)若不是常數的話呢? 我們試看看找出積分因子: x'(t)-A(t)x(t) = b(t) I(t)x'(t)-I(t)A(t)x(t) = I(t)b(t) 我們希望左式變成(I(t)x(t))'= I(t)x'(t)+I'(t)x(t) 可能的選擇是I'(t) = -I(t)A(t) -∫A(t)dt 這讓我們也許會想說是不是I(t)=e 呢? 但這不總是可以這樣,只有: (Case ii) 若A(s)A(t) = A(t)A(s)成立 -∫A(t)dt ∞ (-∫A(t)dt)^n I(t) = e = Σ --------------- n=0 n! ∞ n(-∫A(t)dt)^(n-1) ∞ (-∫A(t)dt)^n =>I'(t) = -Σ ------------------- A(t) = -Σ -------------- A(t)=-I(t)A(t) n=1 n! n=0 n! (注意:可以這樣做的原因是因為A(s)A(t) = A(t)A(s),在套n次product rule時, 這些含有積分的n-1項才會相等) -∫A(t)dt 所以可以發現這個情況下,真的就是上面說的e 也就是我們可以把原式化成: (I(t)x(t))'=I(t)b(t) -1 ∫A(t)dt -∫A(t)dt => x(t) = I (t)∫I(t)b(t)dt = e ∫e b(t)dt 這個也跟variation of parameters的公式長得很像 但若是A(s)A(t) = A(t)A(s)不成立,我們不能把它合成像上面那樣,例如n=2時, t t d(-∫A(s)ds)^2 d(∫A(s)ds)(∫A(t)dt) t t --------------- = ---------------------- = A(t)∫A(s)ds+∫A(s)ds A(t) dt dt t t 這不能變成2A(t)∫A(s)ds或是2∫A(s)dsA(t) 因為A(t)A(s)≠A(s)A(t) 那這時候要怎麼辦呢? 答案是把積分因子換成fundamental matrix A fundamental matrix of system X'(t) = A(t)X(t) is a solution to this system with each columns being linearly independent.(X,A都是nxn矩陣) 也可以看出fundamenal matrix的column構成x'(t)=A(t)x(t)(A是上面那個矩陣, x是n維向量)解空間的basis 對於x'(t)=A(t)x(t)+b(t),x,b為n維向量,A為nxn矩陣.令Φ(t)是fundamental matrix => Φ'(t)=A(t)Φ(t) -1 => A(t) = Φ'(t)Φ (t) (因為根據定義Φ的column線性獨立,所以可逆) 照前面所說的,我們想要找出I'(t)=-I(t)A(t)的I,把上面的關係式帶進去, -1 我們想要找出I,使得I'(t)=-I(t)Φ'(t)Φ (t)成立 => I'(t)Φ(t)=-I(t)Φ'(t) => I'(t)Φ(t)+I(t)Φ'(t) = O => (I(t)Φ(t))' = O (by product rule) => I(t)Φ(t) = C for some nxn constant matrix C -1 => I(t) = CΦ (t) -1 Now set C = I, then I(t) = Φ (t) -1 -1 所以原方程式可變成(Φ (t)x(t))' = Φ (t)b(t) -1 => x(t) = Φ(t)∫Φ (t)b(t)dt 這個就是我們熟悉的variation of parameters的公式 注意到我沒有先假設特解要長成Φ(t)c(t)然後把c(t)解出來 我只假設了I'(t) = -I(t)A(t)成立(矩陣基本上不能直接消AC=BC不一定A=B, 所以這個是我假設可以這樣,然後做看看) 這也可以解釋為什麼書本要介紹fundamental matrix的概念 fundamental matrix不只是為了解X'(t)=A(t)X(t), X,A為矩陣而要引進 也不是為了能把x'(t)=A(t)x(t), A為矩陣, x為向量表示得比較好看而引進 -∫A(t)dt 我覺得最重要的原因是因為在找積分因子的過程,無法用e 當積分因子 但我們還是希望有如純量一階ode的結果,所以把那個積分因子換成fundamental matrix 來解決這個問題,所以才需要引進 而這個矩陣向量版的variation of parameters也可以幫助我們推出n階線性方程的 variation of parameters,並且不用突然設定奇怪的 (k) (k) (k) c'(t)x (t)+c'(t)x (t)+...+c'(t)x (t) = 0, k < n-2 1 1 2 2 n n 這種條件,然後解出c1,...cn 過程如下: (n) (n-1) (n-2) 考慮x (t) +a (t)x (t)+a (t)x (t) + ... a (t)x(t) = f(t) n n-1 1 已知x (t),x (t), ... ,x (t)為n linearly independent solutions of the 1 2 n corresponding homogeneos equation: (n) (n-1) (n-2) x (t) + a (t)x (t) + a x (t) + ... + a (t)x(t) = 0 n n-1 1 Then, set (n-1) y(t) = [y (t)], where y (t) = x(t), y (t) = x'(t),..., y (t) = x (t) 1 1 2 n [y (t)] 2 ... [y (t)] n A(t) = [ 0 1 0 ... 0 ] [ 0 ] [ 0 0 1 ... 0 ] [ 0 ] [ ... ], b(t) = ... [ 0 0 ...0 1 ] [ 0 ] [-a (t) -a (t) ... -a (t)] [f(t)] 1 2 n 則觀察可得: (n) y'(t) = x'(t) = y (t), y'(t) = x''(t) = y (t), ... y'(t) = x (t) 1 2 2 3 n (n) (n-1) x (t) = -a (t)x(t)-a (t)x'(t)-...-a (t)x (t) + f(t) 1 2 n =-a (t)y (t)-a (t)y (t)-...-a (t)y (t) + f(t) 1 1 2 2 n n y'(t) = A(t)y(t)+b(t) 而[x (t) ] [x (t) ] [x (t) ] 1 2 n [x'(t) ] [x'(t) ] [x'(t) ] 1 2 n 為 n linearly independent solution of ... ... ... ... (n-1) (n-1) (n-1) [x (t)] [x (t)] [x (t)] 1 2 n the system y'(t) = A(t)y(t) 所以Φ(t) = [x (t) x (t) ... x (t) ] 1 2 n [x'(t) x'(t) ... x'(t) ] 為fundamental matrix of the system 1 2 n ... (n-1) (n-1) (n-1) [x (t) x (t) ... x (t)] 1 2 n Y'(t) = A(t)Y(t), Y(t)為nxn矩陣 利用variation of parameters: -1 y(t) = Φ(t)∫Φ (t)b(t)dt -1 -1 Set c(t) = ∫Φ (t)b(t)dt => c'(t) = Φ (t)b(t) => Φ(t)c'(t) = b(t) 用矩陣乘法乘開,第一個分量就是: y(t) = c (t)x (t) + c (t)x (t) + ... + c (t)x (t) 1 1 2 2 n n 而Φ(t)c'(t) = b(t)把左式用矩陣乘法乘開和右邊比較係數可得: c '(t)x (t) + c'(t)x (t) + ... + c'(t)x (t) = 0 1 1 2 2 n n c'(t)x' (t) + c'(t)x'(t) + ... + c'(t)x'(t) = 0 1 1 2 2 n n ... (n-2) (n-2) (n-2) c'(t)x (t) + c'(t)x (t) + ... + c'(t)x (t) = 0 1 1 2 2 n n (n-1) (n-1) (n-1) c'(t)x (t) + c'(t)x (t) + ... + c'(t)x (t) = f(t) 1 1 2 2 n n 這個就是我們在variation of parameters所設定的n個條件 我認為這種講法會讓做variation of parameters變得更加自然 不需要做過多的猜測 希望這篇文章對各位有幫助~~ -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.47.95.208 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1676750644.A.7C1.html