看板 Math 關於我們 聯絡資訊
※ 引述《Crissangel (大家都叫我韓)》之銘言: : 要證明 : 在0<x<π/2時 : x-(1/2)*x^3<sinx<x : sinx<x的部分沒問題 : 想請教的是前半部分的不等式 : 應該怎麼從單位圓內部的長度or面積來想 : 感謝各位 三角估計的基本定理:sin x < x < tan x 首先是 cos x < (sin x)/x, 所以 1 - (sin x)/x < 1 - cos x = 2 sin^2 (x/2) < 2 * (x/2)^2 = x^2 / 2 => x - sin x < x^3 / 2 => sin x > x - x^3 / 2 如果想要更精確的估計,一樣可以從 cos x 下手。 從上面已經知道 1 - x^2 / 2 < cos x 了。 另外,從 x * cos x < sin x 出發, 可以知道 x^2 * cos^2 x < 1 - cos^2 x => cos x < 1 / √( 1 + x^2 ) 所以 1 - x^2 / 2 < cos x < 1 - x^2 / 2 + 3/8 * x^4 - ... 這邊為了展開級數,犧牲掉了 x 的範圍,只剩下 0 < x < 1。 然後逐項積分,可以得到 x - x^3 / 6 < sin x < x - x^3 / 6 + 3/40 * x^5 - ... 這樣在 0 < x < 1 的範圍內,sin x 就可以夾得更緊一點了。 然後再回頭夾 cos x,反覆估計就可以把兩個函數的泰勒展開都算出來。 不透過積分的話,也有其他手段可以估計 (x - sin x) / x^3。 為了方便,先給個名字 f(x) = (x - sin x) / x^3。 原本的題目只告訴我們 x 是第一象限角的時候 f(x) < 1/2。 利用三倍角公式:f(x) = 1/9 * f(x/3) + 4/27 * [ (sin x/3)/(x/3) ]^3 所以 f(x) < 1/9 * f(x/3) + 4/27 < ... < 1/9^n * f(x/3^n) + 1/6 * ( 1 - 1/9^n ) 得到 f(x) - 1/6 < 1/9^n * [ f(x/3^n) - 1/6 ] < 1/9^n * 1/3 for all n 最後那三個英文字很重要,他們告訴我們 f(x) - 1/6 ≦ 0 也就是說 (x - sin x) / x^3 ≦ 1/6 => sin x ≧ x - x^3 / 6 剛剛是先用 1 高估 (sin x/3)/(x/3),這次用 cos x/3 低估他。 所以 f(x) > 1/9 * f(x/3) + 4/27 * cos^3 x/3 = 1/9 * f(x/3) + 1/9 * cos x/3 + 1/27 * cos x > 1/9 * f(x/3) + 1/9 * ( 1 - x^2 / 18 ) + 1/27 * ( 1 - x^2 / 2 ) 這次的計算比較複雜,但一路遞迴下去也可以得到 f(x) - 1/6 + x^2/40 > 1/9^n * [ f(x/3^n) - 1/6 + (x/3^n)^2 / 40 ] > -1/(6*9^n) 這次是直接利用 f(x) > 0 和 x^2/40 > 0 的特性。 然後上面的式子一樣要對所有 n 都成立,所以 f(x) - 1/6 + x^2/40 ≧ 0 就得到了 sin x ≦ x - x^3 / 6 + x^5 / 40 所以新的 sin x 估計公式就是:x - x^3 / 6 ≦ sin x ≦ x - x^3 / 6 + x^5 / 40 上下限都成功收緊了。 想收得更緊就去找 ( sin x - x + x^3 / 6 ) / x^5 的上下限。 雖然不直接積分是可行的,不過刻意避開微積分不是很有必要。 但是「這個過程行得通」可以表明: 真的只要知道 sin x < x < tan x,和上確界、下確界的概念, 就足夠把 sin x 這些三角函數的銳角函數值估計得非常準。 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.160.14.64 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1688846490.A.FE3.html