看板 Math 關於我們 聯絡資訊
※ 引述《will2004 (夏天的風)》之銘言: : 請問矩形ABCD,AB:AD=1:2,求矩形周長? : https://imgur.com/a/tpbofgA : 謝謝 來列式 假設此矩形左下角位於(0,0) 且長2k, 高k 一點(x,y) x^2+y^2 = 18 (1) x^2+(k-y)^2 = 10 (2) (2k-x)^2 + (k-y)^2 = 26 (3) (3)-(2) (2k-x)^-x^2 = 16 4k^2-4kx = 16 k^2-kx = 4 kx = k^2-4 x = k-4/k (1)-(2) y^2 - k^2 +2ky -y^2 = 8 2ky = 8+k^2 y = k/2 + 4/k x,y代入(1) (k-4/k)^2 + (k/2+4/k)^2 = k^2 - 8 + 16/k^2 + k^2/4 + 4 + 16/k^2 = 18 1.25k^2+32/k^2 = 22 let k^2 = A 5A/4 + 32/A = 22 5A^2 + 128 - 88A = 0 A = (88+sqrt(88^2-4*5*128))/10 = (88+72)/10 = 16(只能取正) k = 4, 周長=2*(4+8) = 24# -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 211.23.191.211 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1737011410.A.250.html